如何提高 Java 中锁的性能

两个月前向Plumbr公司引进线程死锁的检测之后,我们开始收到一些类似于这样的询问:“棒极了!现在我知道造成程序出现性能问题的原因了,但是接下来该怎么做呢?”

我们努力为自己的产品所遇到的问题思考解决办法,但在这篇文章中我将给大家分享几种常用的技术,包括分离锁、并行数据结构、保护数据而非代码、缩小锁的作用范围,这几种技术可以使我们不使用任何工具来检测死锁。

锁不是问题的根源,锁之间的竞争才是

通常在多线程的代码中遇到性能方面的问题时,一般都会抱怨是锁的问题。毕竟锁会降低程序的运行速度和其较低的扩展性是众所周知的。因此,如果带着这种“常识”开始优化代码,其结果很有可能是在之后会出现讨人厌的并发问题。

因此,明白竞争锁和非竞争锁的不同是非常重要的。当一个线程试图进入
另一个线程正在执行的同步块或方法时会触发锁竞争。该线程会被强制进入等待状态,直到第一个线程执行完同步块并且已经释放了监视器。当同一时间只有一个线
程尝试执行同步的代码区域时,锁会保持非竞争的状态。

事实上,在非竞争的情况下和大多数的应用中,JVM已经对同步进行了优化。非竞争锁在执行过程中不会带来任何额外的开销。因此,你不应该因为性能问题抱怨锁,应该抱怨的是锁的竞争。当有了这个认识之后,让我们来看下能做些什么,以降低竞争的可能性或减少竞争的持续时间。

保护数据而非代码

解决线程安全问题的一个快速的方法就是对整个方法的可访问性加锁。例如下面这个例子,试图通过这种方法来建立一个在线扑克游戏服务器:


  1. class GameServer { 
  2.   public Map<<String, List<Player>> tables = new HashMap<String, List<Player>>(); 
  3.  
  4.   public synchronized void join(Player player, Table table) { 
  5.     if (player.getAccountBalance() > table.getLimit()) { 
  6.       List<Player> tablePlayers = tables.get(table.getId()); 
  7.       if (tablePlayers.size() < 9) { 
  8.         tablePlayers.add(player); 
  9.       } 
  10.     } 
  11.   } 
  12.   public synchronized void leave(Player player, Table table) {/*body skipped for brevity*/} 
  13.   public synchronized void createTable() {/*body skipped for brevity*/} 
  14.   public synchronized void destroyTable(Table table) {/*body skipped for brevity*/} 

作者的意图是好的——当一个新的玩家加入牌桌 时,必须确保牌桌上的玩家个数不会超过牌桌可以容纳的玩家总个数9。

但是这种解决办法事实上无论何时都要对玩家进入牌桌进行控制——即使是在服务器的访问量较小的时候也是这样,那些等
待锁释放的线程注定会频繁的触发系统的竞争事件。包含对账户余额和牌桌限制检查的锁定块很可能大幅提高调用操作的开销,而这无疑会增加竞争的可能性和持续
时间。

解决的第一步就是确保我们保护的是数据,而不是从方法声明移到方法体中的那段同步声明。对于上面那个简单的例子来说,可能改变不大。但是我们要站在整个游戏服务的接口之上来考虑,而不是单单的一个join()方法。


  1. class GameServer { 
  2.   public Map<String, List<Player>> tables = new HashMap<String, List<Player>>(); 
  3.  
  4.   public void join(Player player, Table table) { 
  5.     synchronized (tables) { 
  6.       if (player.getAccountBalance() > table.getLimit()) { 
  7.         List<Player> tablePlayers = tables.get(table.getId()); 
  8.         if (tablePlayers.size() < 9) { 
  9.           tablePlayers.add(player); 
  10.         } 
  11.       } 
  12.     } 
  13.   } 
  14.   public void leave(Player player, Table table) {/* body skipped for brevity */} 
  15.   public void createTable() {/* body skipped for brevity */} 
  16.   public void destroyTable(Table table) {/* body skipped for brevity */} 

原本可能只是一个小小的改变,影响的可是整个类的行为方式。玩家无论何时加入牌桌,先前的同步方法都会对整个GameServer实例加锁,进而会与那些同时试图离开牌桌的玩家产生竞争。将锁从方法声明移到方法体中会延迟锁的加载,进而降低了锁竞争的可能性。

缩小锁的作用范围

现在,当确信了需要保护的是数据而非程序后,我们应该确保我们只在必要的地方加锁——例如当上面的代码被重构之后:


  1. public class GameServer { 
  2.   public Map<String, List<Player>> tables = new HashMap<String, List<Player>>(); 
  3.  
  4.   public void join(Player player, Table table) { 
  5.     if (player.getAccountBalance() > table.getLimit()) { 
  6.       synchronized (tables) { 
  7.         List<Player> tablePlayers = tables.get(table.getId()); 
  8.         if (tablePlayers.size() < 9) { 
  9.           tablePlayers.add(player); 
  10.         } 
  11.       } 
  12.     } 
  13.   } 
  14.   //other methods skipped for brevity 

这样那段包含对玩家账号余额检测(可能引发IO操作)的可能引起费时操作的代码,被移到了锁控制的范围之外。注意,现在锁仅仅被用来防止玩家人数超过桌子可容纳的人数,对账户余额的检查不再是该保护措施的一部分了。

分离锁

你可以从上面例子最后一行代码清楚的看到:整个数据结构是由相同的锁保护着。考虑到在这一种数据结构中可能会有数以千计的牌桌,而我们必须保护任何一张牌桌的人数不超过容量,在这样的情况下仍然会有很高的风险出现竞争事件。

关于这个有一个简单的办法,就是对每一张牌桌引入分离锁,如下面这个例子所示:


  1. public class GameServer { 
  2.   public Map<String, List<Player>> tables = new HashMap<String, List<Player>>(); 
  3.  
  4.   public void join(Player player, Table table) { 
  5.     if (player.getAccountBalance() > table.getLimit()) { 
  6.       List<Player> tablePlayers = tables.get(table.getId()); 
  7.       synchronized (tablePlayers) { 
  8.         if (tablePlayers.size() < 9) { 
  9.           tablePlayers.add(player); 
  10.         } 
  11.       } 
  12.     } 
  13.   } 
  14.   //other methods skipped for brevity 

现在,我们只对单一牌桌的可访问性进行同步而不是所有的牌桌,这样就显著降低了出现锁竞争的可能性。举一个具体的例子,现在在我们的数据结构中有100个牌桌的实例,那么现在发生竞争的可能性就会比之前小100倍。

使用线程安全的数据结构

另一个可以改善的地方就是抛弃传统的单线程数据结构,改用被明确设计为线程安全的数据结构。例如,当采用ConcurrentHashMap来储存你的牌桌实例时,代码可能像下面这样:


  1. public class GameServer { 
  2.   public Map<String, List<Player>> tables = new ConcurrentHashMap<String, List<Player>>(); 
  3.  
  4.   public synchronized void join(Player player, Table table) {/*Method body skipped for brevity*/} 
  5.   public synchronized void leave(Player player, Table table) {/*Method body skipped for brevity*/} 
  6.  
  7.   public synchronized void createTable() { 
  8.     Table table = new Table(); 
  9.     tables.put(table.getId(), table); 
  10.   } 
  11.  
  12.   public synchronized void destroyTable(Table table) { 
  13.     tables.remove(table.getId()); 
  14.   } 

在join()和leave()方法内部的同步块仍然和先前的例子一样,因为我们要保证单个牌桌数据的完整性。ConcurrentHashMap 在这点上并没有任何帮助。但我们仍然会在increateTable()destoryTable()方法中使用ConcurrentHashMap创建和销毁新的牌桌,所有这些操作对于ConcurrentHashMap来说是完全同步的,其允许我们以并行的方式添加或减少牌桌的数量。

其他一些建议和技巧

  • 降低锁的可见度。在上面的例子中,锁被声明为public(对外可见),这可能会使得一些别有用心的人通过在你精心设计的监视器上加锁来破坏你的工作。
  • 通过查看java.util.concurrent.locks 的API来看一下 有没有其它已经实现的锁策略,使用其改进上面的解决方案。
  • 使用原子操作。在上面正在使用的简单递增计数器实际上并不要求加锁。上面的例子中更适合使用 AtomicInteger代替Integer作为计数器。

最后一点,无论你是否正在使用Plumber的自动死锁检测解决方案,还是手动从线程转储获得解决办法的信息,都希望这篇文章可以为你解决锁竞争的问题带来帮助。

来源:51CTO

时间: 2024-10-06 07:47:57

如何提高 Java 中锁的性能的相关文章

如何改善Java中锁的性能

我们努力为自己的产品所遇到的问题思考解决办法,但在这篇文章中我将给大家分享几种常用的技术,包括分离锁.并行数据结构.保护数据而非代码.缩小锁的作用范围,这几种技术可以使我们不使用任何工具来检测死锁. 锁不是问题的根源,锁之间的竞争才是 通常在多线程的代码中遇到性能方面的问题时,一般都会抱怨是锁的问题.毕竟锁会降低程序的运行速度和其较低的扩展性是众所周知的.因此,如果带着这种"常识"开始优化代码,其结果很有可能是在之后会出现讨人厌的并发问题. 因此,明白竞争锁和非竞争锁的不同是非常重要的

Java中的数据是怎么存储的?

问题描述 java中的数据有哪些存储方式,能详细介绍下么? 解决方案 在JAVA中,有六个不同的地方可以存储数据:1. 寄存器(register).这是最快的存储区,因为它位于不同于其他存储区的地方--处理器内部.但是寄存器的数量极其有限,所以寄存器由编译器根据需求进行分配.你不能直接控制,也不能在程序中感觉到寄存器存在的任何迹象.2. 堆栈(stack).位于通用RAM中,但通过它的"堆栈指针"可以从处理器哪里获得支持.堆栈指针若向下移动,则分配新的内存:若向上移动,则释放那些内存.

[Java] 方法锁、对象锁和类锁的意义和区别

版权声明:请尊重个人劳动成果,转载注明出处,谢谢! 目录(?)[+] 首先的明白Java中锁的机制 synchronized  在修饰代码块的时候需要一个reference对象作为锁的对象.  在修饰方法的时候默认是当前对象作为锁的对象.  在修饰类时候默认是当前类的Class对象作为锁的对象.   线程同步的方法:sychronized.lock.reentrantLock分析 方法锁(synchronized修饰方法时) 通过在方法声明中加入 synchronized关键字来声明 synch

Java中的HashMap浅析

在Java的集合框架中,HashSet,HashMap是用的比较多的一种,顺序结构的ArrayList.LinkedList这种也比较多,而像那几个线程同步的容器就用的比较少,像Vector和HashTable,因为这两个线程同步的容器已经不被JDK推荐使用了,这是个比较老式的线程安全的容器,JDK比较推荐的是采用Collections里面的关于线程同步的方法. 问题来源: 1.为什么要有HashMap? <Thinking In Java>里面有一个自己采用二维数组实现的保存key-valu

研究 Java 中 XML 文档模型的特性和性能

xml|性能 Java 中的 XML: 文档模型,第一部分:性能 研究 Java 中 XML 文档模型的特性和性能 文档选项 将此页作为电子邮件发送 最新推荐 Java 应用开发源动力 - 下载免费软件,快速启动开发 级别: 初级 Dennis M. Sosnoski, 总裁, Sosnoski Software Solutions, Inc. 2001 年 9 月 01 日 在本文中,Java 顾问 Dennis Sosnoski 比较几个 Java 文档模型的性能和功能.当选择模型时,无法做

如何优化JAVA程序设计和编码,提高JAVA性能

通过使用一些辅助性工具来找到程序中的瓶颈,然后就可以对瓶颈部分的代码进行优化.一般有两种方案:即优化代码或更改设计方法.我们一般会选择后者,因为不去调用以下代码要比调用一些优化的代码更能提高程序的性能.而一个设计良好的程序能够精简代码,从而提高性能. 下面将提供一些在JAVA程序的设计和编码中,为了能够提高JAVA程序的性能,而经常采用的一些方法和技巧. 1.对象的生成和大小的调整. JAVA程序设计中一个普遍的问题就是没有好好的利用JAVA语言本身提供的函数,从而常常会生成大量的对象(或实例)

实例jie如何提高Java Web 服务性能优化实践

本文介绍如何提升 Java Web 服务性能,主要介绍了三种方法:一是采用 Web 服务的异步调用,二是引入 Web 服务批处理模式,三是压缩 SOAP 消息.重点介绍在编程过程中如何使用异步 Web 服务以及异步调用和同步调用的差异点.本文还示范了如何在项目中使用以上三种方法,以及各种方法所适合的应用场景. Java Web 服务简介 Web 服务是一种面向服务架构的技术,通过标准的 Web 协议提供服务,目的是保证不同平台的应用服务可以互操作.Web 服务(Web Service)是基于 X

多线程 java 同步 锁-java中多线程访问同步问题

问题描述 java中多线程访问同步问题 public class SyschronizedSample{ private int value; public synchronized int get(){ return value;} public synchronized void set(int value) { this.value=value; } } 以上的代码中,要使得访问value时具有线程安全,所以在set和get方法中都加了synchronized同步语句,如果只在set方法前

Java中无锁HashMap的原理与实现教程

在<Java出现HashMap的死循环的原因及解决方法>中,我们看到,java.util.HashMap并不能直接应用于多线程环境.对于多线程环境中应用HashMap,主要有以下几种选择: 使用线程安全的java.util.Hashtable作为替代. 使用java.util.Collections.synchronizedMap方法,将已有的HashMap对象包装为线程安全的. 使用java.util.concurrent.ConcurrentHashMap类作为替代,它具有非常好的性能.