大数据安全分析不容忽视的三个真相

文章讲的是大数据安全分析不容忽视的三个真相,大数据分析工具与分布式数据库确实蕴藏着巨大潜力,有可能改变安全监控与调查工作的执行方式。然而这些与汇总安全数据并加速分析流程的创新途径也会带来很多不必要的麻烦。

  这不仅是因为比起供应商们的卖力宣传,这些工具与服务其实很难被纳入业务流程当中,而且它们还会给不加批判使用这类方案的安全部门带来大量潜在风险。这一结论来自Rapid7公司首席研究官兼安全研究员H.D.Moore本周早些时候在本届于波士顿举行的联合国安全大会上的发言。

  根据Moore的观点,大数据很可能给“攻击者与防御者双方的根本机制带来变化”。而且安全部门尤其需要从以下三个角度理解Moore在本届大会上的发言。

  1. 大数据绝非魔法

  根据Moore的论断,如今以大数据为核心的炒作之声甚嚣尘上,这一术语已经成为所有类型安全分析工具的必备宣传口号。安全业界几乎把它作为一句咒语来膜拜,似乎只要有大数据存在,安全性的美梦就能最终实现。

  “人们往往认为如果我们把所有数据都安置在一起,就能魔术般地实现安全性诉求。这当然只是种误解,”他指出。“在海量数据面前,我们可以通过深入钻研找到有价值的内容,从而获得显著的安全提升效果,但整个分析过程绝不可能手到擒来。”

  如果没有专门的管理者打理执行流程、编写正确的查询指令并询问符合实际的安全问题,大数据其实根本无法带来什么实质性效果。“因此,请注意您的投资方向,并确保在向某款数据分析工具投资之前、至少已经有一家其它厂商也向其投过资。再有,我们的投资数额不要超过对方,”他指出。

  2. 把所有鸡蛋放在同一个摇摇欲坠的篮子当中

  更令Moore感到忧心的是,虽然大数据安全分析工具层出不穷(包括自主研发与第三方提供),但这些工具本身的安全性其实并没有保障。

  “我们看到众多以大数据工具包为核心创造出的方案——例如Mongo以及Cassandra——但这些工具中往往并没有加入安全机制,”他表示。举例来说,MongoDB在默认状态下并不支持SSL,而且与更加成熟的传统数据库相比、其安全级别还远远达不到要求、也没有提供类似的管理工具。“这实际上非常可怕,在默认情况下这些工具毫无安全性可言,但它们如今却已经被打包出售并充当大数据服务的后端。”

  此同时,企业则将大量安全元数据、日志文件等等聚合在一起从而实现大规模分析,这种做法进一步加深了安全风险出现的可能性。

  “企业正竭尽全力将所有能够获取到的数据集中起来保存在同一位置,”他解释道。“对于恶意人士来说,这种集中式存储方式无疑是最唾手可得的财富宝库。面对过去那些可怕的密码泄露事故,每位管理者都会感到不寒而慄。然而与未来可能由于大数据汇总所引发的TB级别数据泄露相比,过去那些事故简直不算什么。”

  企业放置敏感安全数据的篮子不仅太大,而且放得也不太稳,这一切当然会令人忧心忡忡。

  3. 依平均概率推算,分析服务供应商的违规事故即将出现

  在多数情况下,鸡蛋篮子的倾覆普遍基于外部原因。随着大数据安全分析服务供应商逐步加入战团,企业如果不认真审查自己的供应商、其面临的风险状况将持续恶化,Moore警告称。

  “安全服务供应商所处理的数据总量以及数据类型非常关键,”Moore进一步解释称。“大家会发现包括电话通话日志(谁打给谁、用户何时登陆等)以及其它敏感信息在内的数据都会被纳入到日志文件当中来。”

  Moore认为,随着服务供应商在市场价值上的逐步拓展,他们使用的相关产品中不安全因素也将持续增加。供应商手中掌握的重要客户数据清单一天天膨胀,而这最终会导致大规模数据泄露事故——这一天已经不会很远。

  “明年几乎必须会出现大问题,我们很可能看到某家大型分析服务供应商——无论是安全性、日志数据还是其它业务——遭遇违规事故,”他指出。“这与个人意见无关,而只是平均概率带来的必然结果。如今有很多家伙正努力打造产品与服务,虽然我们并不了解他们的具体执行流程,但数据泄露的出现将只是时间问题。”

作者:核子可乐 编译

来源:IT168

原文链接:大数据安全分析不容忽视的三个真相

时间: 2024-11-17 17:48:06

大数据安全分析不容忽视的三个真相的相关文章

大数据安全分析:学习Facebook的ThreatData框架

在本文中,专家Kevin Beaver将探讨企业如何学习Facebook的ThreatData框架安全分析来加强企业防御.自成立以来,Facebook一直是网络攻击的目标.他们积极抵御恶意软件和防止欺诈,并且他们在这方面的努力经常见诸报端.然而,可以很公平地说,Facebook面临的实际威胁更加严峻.当面对威胁时,知识就是力量.很多企业都 认识到威胁分析和安全分析的重要性,它们不仅可以帮助阻止当前威胁,还可以提高事件响应.最近,Facebook宣布通过其ThreatData框架进军大数据安全分析

十问大数据安全分析(大数据安全的小船怎样才能不翻?)

人类的生产生活每天都在产生大量的数据,并且产生的速度越来越快.新的攻击手段层出不穷,需要检测的数据越来越多,现有的分析技术不堪重负. 安全数据的数量.速度.种类的迅速膨胀,导致的不仅仅是海量异构数据的融合.存储和管理的问题,甚至动摇了传统的安全分析体系和方法.你了解什么是大数据安全分析么?今天,小编带你十问大数据安全分析. 1.大数据安全分析的核心目标是什么? 找到隐藏在数据背后的安全真相. 数据之间存在着关联,传统分析无法将海量数据汇总,但是大数据技术能够应对海量数据的分析需求.通过大数据基础

大数据安全分析常见问题汇总

大数据是时下最火热的IT行业的词汇,随之数据仓库.数据安全.数据分析.数据挖掘等等围绕大数量的商业价值的利用逐渐成为行业人士争相追捧的利润焦点. 本人在与用户沟通大数据问题时经常会遇到一些问题,现将这些常见问题汇总,抛砖引玉,希望可以帮助到大家. 1. 大数据安全分析的核心目标是什么? 应答:为了能够找到隐藏在数据背后的安全真相.数据之间存在着关联,传统分析无法将海量数据汇总,但是大数据技术能够应对海量数据的分析需求.通过大数据基础能够挖掘出APT攻击.内网隐秘通道.异常用户行为等安全事件.在此

大数据安全分析(理念篇)

一.引言 单纯的防御措施无法阻止蓄意的攻击者,这已经是大家都认同的事实,应对挑战业界有了诸多方面的探索和实践,而其中最有趣的就非安全分析莫属了,围绕着安全分析展开,我们可以看到大数据.安全智能.情景感知.威胁情报.数据挖掘.可视化等等,因为这些都是安全分析师手中的武器. 下面想针对个人有一定了解的地方,具体谈几个方面,每个方面单独成为一篇: 1.安全分析的相关背景及理念 2.安全分析中的狩猎(Hunting)和事件响应 3.安全分析与可视化 4.安全分析相关技能 今年的RSA大会主题是"变化,挑

从东风号到和谐号,探秘启明星辰大数据安全分析平台

经过10年的发展,中国在高速铁路的建设和发展上取得了举世瞩目的成就,目前已经拥有全世界最大规模以及最高运营速度的高速铁路网.从最早的时速100公里的"东风号"内燃机车到最新的最高时速486公里的"和谐号"高速动车,中国铁路技术实现了快速跨越式发展,局部技术上已经走在了世界的前列. 同样,在信息安全领域,启明星辰公司也集安全分析和安全管理平台技术之大成,十年磨一剑,率先在国内推出了大数据安全分析平台,一举将中国信息安全分析和安全管理从"东风"号内燃

有一种信息安全战略叫“主动智能” 有一种安全守护为“大数据安全分析”

网络安全的重要性,在2016年再次上升到一个新的热点,云计算.大数据这些在互联网普及的衍生的新型技术显然在这一年中已经逐渐落地,与此同时带来的庞大数据量让网络攻击者们垂涎不止.数据对于黑客的诱惑越来越大,企业对于数据的保护越来越重视,在这场较量中,网络安全的守护者们除了坚守己任,更多的也是在捍卫一种能力. 同时,在这场较量中,也对传统安全厂商们提出了更高的挑战--网络安全已经不仅仅是杀毒软件.防火墙.IDS.IPS这些传统意义上的问题了,网络环境的复杂,攻击者们的技术能力提升,都对传统安全厂商提

大数据安全分析成未来方向 360市场份额第一

近日,国内知名ICT研究机构赛迪顾问发布<中国大数据安全分析市场白皮书>, 360企业安全以25%的市场份额,名列行业第一.根据白皮书,中国大数据安全分析市场自2014年起开始逐渐成型,2015 年市场总体规模约2.8 亿元. 大数据安全分析是指运用大数据技术对信息系统提供保护的相关安全产品.服务及解决方案.主要产品类型包括大数据安全管理平台和未知威胁感知系统. 大数据安全分析成应对安全挑战的新方向 近年来,信息安全形式显著恶化,因网站或平台被黑客攻击,导致个人信息泄露的事件屡见不鲜.其中,金

为什么需要大数据安全分析?

毫无疑问,我们已经进入了大数据(Big Data)时代.人类的生产生活每天都在产生大量的数据,并且产生的速度越来越快.根据IDC和EMC的联合调查,到2020年全球数据总量将达到40ZB.2013年,Gartner将大数据列为未来信息架构发展的10大趋势之首.Gartner预测将在2011年到2016年间累计创造2320亿美元的产值. 大数据早就存在,只是一直没有足够的基础实施和技术来对这些数据进行有价值的挖据.随着存储成本的不断下降.以及分析技术的不断进步,尤其是云计算的出现,不少公司已经发现

大数据安全分析的6个要点

现在,很多行业都已 经开始利用大数据来提高销售,降 低成本,精准营销等等.然而, 其实大数据在网络安全与信息安全方面也有很长足的应用.特别是利用大数据来甄别和发现风险和漏洞.498)this.width=498;' onmousewheel = 'javascript:return big(this)' style="width: 455px; height: 254px" border="0" alt="大数据安全分析的 6个要点" width