C++设计模式之享元模式_C 语言

前言

无聊的时候,也去QQ游戏大厅玩五子棋或者象棋;作为程序员,看到一个产品,总要去想想它是怎么设计的,怎么完成的,我想这个是所有程序员都会做的事情吧(强迫症???)。有的时候,想完了,还要做一个DEMO出来,才能体现自己的NB,然后还有点小成就感。

在玩五子棋或象棋的时候,我就想过,腾讯那帮伙计是怎么做的呢?五子棋的棋子有黑白两色,难道每次放一个棋子就new一个对象么?象棋有车、马、相、士、帅、炮和兵,是不是每盘棋都要把所有的棋子都new出来呢?如果真的是每一个棋子都new一个,那么再加上那么多人玩;那要new多少对象啊,如果是这样做的话,我想有多少服务器都是搞不定的,可能QQ游戏大厅会比12306还糟糕。那腾讯那帮伙计是如何实现的呢?那就要说到今天总结的享元模式了。

什么是享元模式?

在GOF的《设计模式:可复用面向对象软件的基础》一书中对享元模式是这样说的:运用共享技术有效地支持大量细粒度的对象。

就如上面说的棋子,如果每个棋子都new一个对象,就会存在大量细粒度的棋子对象,这对服务器的内存空间是一种考验,也是一种浪费。我们都知道,比如我在2013号房间和别人下五子棋,2014号房间也有人在下五子棋,并不会因为我在2013号房间,而别人在2014号房间,而导致我们的棋子是不一样的。这就是说,2013号房间和2014号房间的棋子都是一样的,所有的五子棋房间的棋子都是一样的。唯一的不同是每个棋子在不同的房间的不同棋盘的不同位置上。所以,对于棋子来说,我们不用放一个棋子就new一个棋子对象,只需要在需要的时候,去请求获得对应的棋子对象,如果没有,就new一个棋子对象;如果有了,就直接返回棋子对象。这里以五子棋为例子,进行分析,当玩家在棋盘上放入第一个白色棋子时,此时由于没有白色棋子,所以就new一个白色棋子;当另一个玩家放入第一个黑色棋子时,此时由于没有黑色棋子,所以就需要new一个黑色棋子;当玩家再次放入一个白色棋子时,就去查询是否有已经存在的白色棋子对象,由于第一次已经new了一个白色棋子对象,所以,现在不会再次new一个白色棋子对象,而是返回以前new的白色棋子对象;对于黑色棋子,亦是同理;获得了棋子对象,我们只需要设置棋子的不同棋盘位置即可。

UML类图

Flyweight:描述一个接口,通过这个接口flyweight可以接受并作用于外部状态;

ConcreteFlyweight:实现Flyweight接口,并为定义了一些内部状态,ConcreteFlyweight对象必须是可共享的;同时,它所存储的状态必须是内部的;即,它必须独立于ConcreteFlyweight对象的场景;

UnsharedConcreteFlyweight:并非所有的Flyweight子类都需要被共享。Flyweight接口使共享成为可能,但它并不强制共享。

FlyweightFactory:创建并管理flyweight对象。它需要确保合理地共享flyweight;当用户请求一个flyweight时,FlyweightFactory对象提供一个已创建的实例,如果请求的实例不存在的情况下,就新创建一个实例;

Client:维持一个对flyweight的引用;同时,它需要计算或存储flyweight的外部状态。

实现要点

根据我们的经验,当要将一个对象进行共享时,就需要考虑到对象的状态问题了;不同的客户端获得共享的对象之后,可能会修改共享对象的某些状态;大家都修改了共享对象的状态,那么就会出现对象状态的紊乱。对于享元模式,在实现时一定要考虑到共享对象的状态问题。那么享元模式是如何实现的呢?

在享元模式中,有两个非常重要的概念:内部状态和外部状态。

内部状态存储于flyweight中,它包含了独立于flyweight场景的信息,这些信息使得flyweight可以被共享。而外部状态取决于flyweight场景,并根据场景而变化,因此不可共享。用户对象负责在必要的时候将外部状态传递给flyweight。

flyweight执行时所需的状态必定是内部的或外部的。内部状态存储于ConcreteFlyweight对象之中;而外部对象则由Client对象存储或计算。当用户调用flyweight对象的操作时,将该状态传递给它。同时,用户不应该直接对ConcreteFlyweight类进行实例化,而只能从FlyweightFactory对象得到ConcreteFlyweight对象,这可以保证对它们适当地进行共享;由于共享一个实例,所以在创建这个实例时,就可以考虑使用单例模式来进行实现。

享元模式的工厂类维护了一个实例列表,这个列表中保存了所有的共享实例;当用户从享元模式的工厂类请求共享对象时,首先查询这个实例表,如果不存在对应实例,则创建一个;如果存在,则直接返回对应的实例。

代码实现:

复制代码 代码如下:

#include <iostream>
#include <map>
#include <vector>
using namespace std;
 
typedef struct pointTag
{
    int x;
    int y;
 
    pointTag(){}
    pointTag(int a, int b)
    {
        x = a;
        y = b;
    }
 
     bool operator <(const pointTag& other) const
     {
         if (x < other.x)
         {
             return true;
         }
         else if (x == other.x)
         {
             return y < other.y;
         }
 
         return false;
     }
}POINT;
 
typedef enum PieceColorTag
{
    BLACK,
    WHITE
}PIECECOLOR;
 
class CPiece
{
public:
    CPiece(PIECECOLOR color) : m_color(color){}
    PIECECOLOR GetColor() { return m_color; }
 
    // Set the external state
    void SetPoint(POINT point) { m_point = point; }
    POINT GetPoint() { return m_point; }
 
protected:
    // Internal state
    PIECECOLOR m_color;
 
    // external state
    POINT m_point;
};
 
class CGomoku : public CPiece
{
public:
    CGomoku(PIECECOLOR color) : CPiece(color){}
};
 
class CPieceFactory
{
public:
    CPiece *GetPiece(PIECECOLOR color)
    {
        CPiece *pPiece = NULL;
        if (m_vecPiece.empty())
        {
            pPiece = new CGomoku(color);
            m_vecPiece.push_back(pPiece);
        }
        else
        {
            bool bFound = false; // 非常感谢fireace指出的问题
            for (vector<CPiece *>::iterator it = m_vecPiece.begin(); it != m_vecPiece.end(); ++it)
            {
                if ((*it)->GetColor() == color)
                {
                    bFound = true;
                    pPiece = *it;
                    break;
                }
                bFound = false;
            }
            if (!bFound)
            {
                pPiece = new CGomoku(color);
                m_vecPiece.push_back(pPiece);
            }
        }
        return pPiece;
    }
 
    ~CPieceFactory()
    {
        for (vector<CPiece *>::iterator it = m_vecPiece.begin(); it != m_vecPiece.end(); ++it)
        {
            if (*it != NULL)
            {
                delete *it;
                *it = NULL;
            }
        }
    }
 
private:
    vector<CPiece *> m_vecPiece;
};
 
class CChessboard
{
public:
    void Draw(CPiece *piece)
    {
        if (piece->GetColor())
        {
            cout<<"Draw a White"<<" at ("<<piece->GetPoint().x<<","<<piece->GetPoint().y<<")"<<endl;
        }
        else
        {
            cout<<"Draw a Black"<<" at ("<<piece->GetPoint().x<<","<<piece->GetPoint().y<<")"<<endl;
        }
        m_mapPieces.insert(pair<POINT, CPiece *>(piece->GetPoint(), piece));
    }
 
    void ShowAllPieces()
    {
        for (map<POINT, CPiece *>::iterator it = m_mapPieces.begin(); it != m_mapPieces.end(); ++it)
        {
            if (it->second->GetColor())
            {
                cout<<"("<<it->first.x<<","<<it->first.y<<") has a White chese."<<endl;
            }
            else
            {
                cout<<"("<<it->first.x<<","<<it->first.y<<") has a Black chese."<<endl;
            }
        }
    }
 
private:
    map<POINT, CPiece *> m_mapPieces;
};
 
int main()
{
    CPieceFactory *pPieceFactory = new CPieceFactory();
    CChessboard *pCheseboard = new CChessboard();
 
    // The player1 get a white piece from the pieces bowl
    CPiece *pPiece = pPieceFactory->GetPiece(WHITE);
    pPiece->SetPoint(POINT(2, 3));
    pCheseboard->Draw(pPiece);
 
    // The player2 get a black piece from the pieces bowl
    pPiece = pPieceFactory->GetPiece(BLACK);
    pPiece->SetPoint(POINT(4, 5));
    pCheseboard->Draw(pPiece);
 
    // The player1 get a white piece from the pieces bowl
    pPiece = pPieceFactory->GetPiece(WHITE);
    pPiece->SetPoint(POINT(2, 4));
    pCheseboard->Draw(pPiece);
 
    // The player2 get a black piece from the pieces bowl
    pPiece = pPieceFactory->GetPiece(BLACK);
    pPiece->SetPoint(POINT(3, 5));
    pCheseboard->Draw(pPiece);
 
    /*......*/
 
    //Show all cheses
    cout<<"Show all cheses"<<endl;
    pCheseboard->ShowAllPieces();
 
    if (pCheseboard != NULL)
    {
        delete pCheseboard;
        pCheseboard = NULL;
    }
    if (pPieceFactory != NULL)
    {
        delete pPieceFactory;
        pPieceFactory = NULL;
    }
}

内部状态包括棋子的颜色,外部状态包括棋子在棋盘上的位置。最终,我们省去了多个实例对象存储棋子颜色的空间,从而达到了空间的节约。

在上面的代码中,我建立了一个CCheseboard用于表示棋盘,棋盘类中保存了放置的黑色棋子和白色棋子;这就相当于在外部保存了共享对象的外部状态;对于棋盘对象,我们是不是又可以使用享元模式呢?再设计一个棋局类进行管理棋盘上的棋子布局,用来保存外部状态。对于这个,这里不进行讨论了。

优点

享元模式可以避免大量非常相似对象的开销。在程序设计时,有时需要生成大量细粒度的类实例来表示数据。如果能发现这些实例数据除了几个参数外基本都是相同的,使用享元模式就可以大幅度地减少对象的数量。

使用场合

Flyweight模式的有效性很大程度上取决于如何使用它以及在何处使用它。当以下条件满足时,我们就可以使用享元模式了。

1.一个应用程序使用了大量的对象;
2.完全由于使用大量的对象,造成很大的存储开销;
3.对象的大多数状态都可变为外部状态;
4.如果删除对象的外部状态,那么可以用相对较少的共享对象取代很多组对象。

扩展

之前总结了组合模式组合模式,现在回过头来看看,享元模式就好比在组合模式的基础上加上了一个工厂类,进行共享控制。是的,组合模式有的时候会产生很多细粒度的对象,很多时候,我们会将享元模式和组合模式进行结合使用。

总结

使用享元模式可以避免大量相似对象的开销,减小了空间消耗;而空间的消耗是由以下几个因素决定的:

1.实例对象减少的数目;
2.对象内部状态的数目;对象内部状态越多,消耗的空间也会越少;
3.外部状态是计算的还是存储的;由于外部状态可能需要存储,如果外部状态存储起来,那么空间的节省就不会太多。

共享的Flyweight越多,存储节约也就越多,节约量随着共享状态的增多而增大。当对象使用大量的内部及外部状态,并且外部状态是计算出来的而非存储的时候,节约量将达到最大。所以,可以使用两种方法来节约存储:用共享减少内部状态的消耗;用计算时间换取对外部状态的存储。

同时,在实现的时候,一定要控制好外部状态与共享对象的对应关系,比如我在代码实现部分,在CCheseboard类中使用了一个map进行彼此之间的映射,这个映射在实际开发中需要考虑的。

好了,享元模式就总结到这里了。希望大家和我分享你对设计模式的理解。我坚信:分享使我们更进步。
PS:至于腾讯那帮伙计到底是如何实现QQ游戏大厅的,我也不知道,这里也完全是猜测的,请不要以此为基准。

时间: 2025-01-26 04:47:03

C++设计模式之享元模式_C 语言的相关文章

乐在其中设计模式(C#) - 享元模式(Flyweight Pattern)

原文:乐在其中设计模式(C#) - 享元模式(Flyweight Pattern)[索引页][源码下载] 乐在其中设计模式(C#) - 享元模式(Flyweight Pattern) 作者:webabcd 介绍 运用共享技术有效地支持大量细粒度的对象. 示例 有一个Message实体类,某些对象对它的操作有Insert()和Get()方法,现在要运用共享技术支持这些对象. MessageModel using System;using System.Collections.Generic;usi

C#设计模式(12)——享元模式(Flyweight Pattern)

原文:C#设计模式(12)--享元模式(Flyweight Pattern) 一.引言 在软件开发过程,如果我们需要重复使用某个对象的时候,如果我们重复地使用new创建这个对象的话,这样我们在内存就需要多次地去申请内存空间了,这样可能会出现内存使用越来越多的情况,这样的问题是非常严重,然而享元模式可以解决这个问题,下面具体看看享元模式是如何去解决这个问题的. 二.享元模式的详细介绍 在前面说了,享元模式可以解决上面的问题了,在介绍享元模式之前,让我们先要分析下如果去解决上面那个问题,上面的问题就

【设计模式】—— 享元模式Flyweight

模式意图 享元模式,也叫[轻量级模式]或者[蝇量级模式].主要目的就是为了减少细粒度资源的消耗.比如,一个编辑器用到大量的字母数字和符号,但是不需要每次都创建一个字母对象,只需要把它放到某个地方共享使用,单独记录每次创建的使用上下文就可以了. 再比如餐馆的桌子,餐具,这些都是享元模式的体现.客户是流动的,每次吃饭都是用饭店固定的那些餐具,而饭店也不需要每次新来顾客,就买新的盘子餐具. 应用场景 1 一个系统应用到了大量的对象,而且很多都是重复的. 2 由于大量对象的使用,造成了存储效率上的开销.

C++设计模式13----Flyweight享元模式

Flyweight享元模式概述 作用:运用共享技术有效地支持大量细粒度的对象. 内部状态intrinsic和外部状态extrinsic: 1)Flyweight模式中,最重要的是将对象分解成intrinsic和extrinsic两部分. 2)内部状态:在享元对象内部并且不会随环境改变而改变的共享部分,可以称为是享元对象的内部状态 3)外部状态:而随环境改变而改变的,取决于应用环境,或是实时数据,这些不可以共享的东西就是外部状态了. 4)内部状态和外部状态之间的区别: 在Flyweight模式应用

设计模式:享元模式(Flyweight)

 运用共享技术有效地支持大量细粒度的对象.又名"蝇量模式".  在Java语言中,String类型就是使用了享元模式.String对象是final类型,对象一旦创建就不可改变.在JAVA中字符串常量都是存在常量池中的,Java会确保一个字符串常量在常量池中只有一个拷贝.譬如: String a = "abc"; String b = "abc"; System.out.println(a==b);  输出结果:true.这就说明了a和b量引用都指

Java设计模式之享元模式学习笔记

享元模式(Flyweight Pattern)主要用于减少创建对象的数量,以减少内存占用和提高性能.这种这种类型的设计模式属于结构型模式,它提供了减少对象数量从而改善应用所需的对象结构的方式.享元模式尝试重用现有的同类对象,如果未找到匹配的对象,则创建新对象. Java中String的实现就是一个典型的享元模式应用,Java中的String存在字符串常量池中,Java会确保一个字符串常量在常量池中只有一个拷贝.数据库连接池也是一个比较电信的享元模式应用,可简单理解为先初始化一定数量的数据库连接,

Head First设计模式之享元模式(蝇量模式)

一.定义 享元模式(Flyweight Pattern)主要用于减少创建对象的数量,以减少内存占用和提高性能.这种类型的设计模式属于结构型模式,它提供了减少对象数量从而改善应用所需的对象结构的方式. 享元模式尝试重用现有的同类对象,如果未找到匹配的对象,则创建新对象.我们将通过创建 5 个对象来画出 20 个分布于不同位置的圆来演示这种模式.由于只有 5 种可用的颜色,所以 color 属性被用来检查现有的 Circle 对象. 二.结构   三.实现   namespace DesignPat

php设计模式 FlyWeight (享元模式)

复制代码 代码如下: <?php /** * 享元模式 * * 运用享元技术有效的支持大量细粒度的对象 */ class CD { private $_title = null; private $_artist = null; public function setTitle($title) { $this->_title = $title; } public function getTitle() { return $this->_title; } public function s

深入理解JavaScript系列(37):设计模式之享元模式详解_基础知识

介绍 享元模式(Flyweight),运行共享技术有效地支持大量细粒度的对象,避免大量拥有相同内容的小类的开销(如耗费内存),使大家共享一个类(元类). 享元模式可以避免大量非常相似类的开销,在程序设计中,有时需要生产大量细粒度的类实例来表示数据,如果能发现这些实例除了几个参数以外,开销基本相同的 话,就可以大幅度较少需要实例化的类的数量.如果能把那些参数移动到类实例的外面,在方法调用的时候将他们传递进来,就可以通过共享大幅度第减少单个实例 的数目. 那么如果在JavaScript中应用享元模式