《计算机视觉:模型、学习和推理》——3.9 共轭性

3.9 共轭性

贝塔分布可以表征伯努利分布中参数的概率,与之相似,狄利克雷分布可表征分类分布参数的分布,同样的类比关系也适用于正态逆伽马分布与一元正态分布、正态逆维希特分布与多元正态分布之间。

这些配对有很特殊的关系:在每种情况下前一个分布是后一个的共轭:贝塔分布与伯努利分布共轭,狄利克雷分布与分类分布共轭。当把一个分布与其共轭分布相乘时,结果正比于一个新的分布,它与共轭形式相同。例如:

其中,k是缩放因子,相对于变量λ它是一个常量。值得注意的是,这个式子并不总是成立:如果选择其他分布而非贝塔分布,那么这个乘积的形式将发生变化。对于这种情况,式(3-19)中的关系很容易证明:

其中,第三行中同时乘以和除以与Betaλ[α,β]关联的常量。
在学习(拟合分布)和评估模型(评估在拟合分布下新数据的概率)的过程中会用到分布的乘积,因此共轭关系很重要。共轭关系意味着这些乘积可以闭式求解。

时间: 2024-09-27 14:18:24

《计算机视觉:模型、学习和推理》——3.9 共轭性的相关文章

《计算机视觉:模型、学习和推理》一导读

前言 目前,已有很多关于计算机视觉的书籍,那么还有必要再写另外一本吗?下面解释撰写本书的原因. 计算机视觉是一门工程学科,机器在现实世界中捕获的视觉信息可以激发我们的积极性.因此,我们通过使用计算机视觉解决现实问题来对我们的知识进行分类.例如,大多数视觉教科书都包含目标识别和立体视觉内容.我们的学术研讨会也是用同样的模式进行组织的.本书对这一传统方式提出了质疑:这真的是我们组织自己知识的正确方法吗? 对于目标识别问题,目前已提出多种算法解决这一问题(例如子空间模型.boosting模型.语义包模

《计算机视觉:模型、学习和推理》——导读

**前言**目前,已有很多关于计算机视觉的书籍,那么还有必要再写另外一本吗?下面解释撰写本书的原因.计算机视觉是一门工程学科,机器在现实世界中捕获的视觉信息可以激发我们的积极性.因此,我们通过使用计算机视觉解决现实问题来对我们的知识进行分类.例如,大多数视觉教科书都包含目标识别和立体视觉内容.我们的学术研讨会也是用同样的模式进行组织的.本书对这一传统方式提出了质疑:这真的是我们组织自己知识的正确方法吗?对于目标识别问题,目前已提出多种算法解决这一问题(例如子空间模型.boosting模型.语义包

《树莓派开发实战(第2版)》——2.2 创建模型和运行推理:重回Hello World

2.2 创建模型和运行推理:重回Hello World 您已经概要了解了Figaro概念,接下来看看它们是如何融合在一起的.您将回顾第1章的Hello World示例,特别注意图2-2中的所有概念是如何出现在这个例子中的.您将关注如何从原子和复合元素中构建模型,观测证据,提出查询,运行推理算法,得到答案. 本章的代码可以两种方式运行.一种是使用Scala控制台,逐行输入语句并获得即时响应.为此,进入本书项目根目录PracticalProbProg/examples并输入sbt console,将

强化学习之 免模型学习(model-free based learning)

  强化学习之 免模型学习(model-free based learning) ------ 蒙特卡罗强化学习 与 时序查分学习   ------ 部分节选自周志华老师的教材<机器学习> 由于现实世界当中,很难获得环境的转移概率,奖赏函数等等,甚至很难知道有多少个状态.倘若学习算法是不依赖于环境建模,则称为"免模型学习(model-free learning)",这比有模型学习要难得多.   1. 蒙特卡罗强化学习: 在免模型学习的情况下,策略迭代算法会遇到几个问题: 首

《计算机视觉:模型、学习和推理》一3.9 共轭性

3.9 共轭性 贝塔分布可以表征伯努利分布中参数的概率,与之相似,狄利克雷分布可表征分类分布参数的分布,同样的类比关系也适用于正态逆伽马分布与一元正态分布.正态逆维希特分布与多元正态分布之间.这些配对有很特殊的关系:在每种情况下前一个分布是后一个的共轭:贝塔分布与伯努利分布共轭,狄利克雷分布与分类分布共轭.当把一个分布与其共轭分布相乘时,结果正比于一个新的分布,它与共轭形式相同.例如:其中,k是缩放因子,相对于变量λ它是一个常量.值得注意的是,这个式子并不总是成立:如果选择其他分布而非贝塔分布,

《计算机视觉:模型、学习和推理》一1.1 本书结构

1.1 本书结构 本书分为六部分,如图1-2所示. 本书的第一部分涵盖概率方面的背景知识.全书中所有的模型都是用概率的术语表示,概率是计算机视觉应用中一门很有用的语言.具有扎实工程数学背景的读者或许对这部分知识比较熟悉,但仍需要浏览这些章节以确保掌握相关的符号.那些尚不具备该背景的读者应该仔细阅读这些章节.这些知识相对比较简单,但它们是本书其余部分的基础.在正式提到计算机视觉知识前被迫阅读三十多页的数学虽然令人沮丧,但请相信我,这些基础知识将为后续的学习提供坚实的基础. 图1-2 章节依赖关系.

《计算机视觉:模型、学习和推理》——1.1 本书结构

1.1 本书结构 本书分为六部分,如图1-2所示. 本书的第一部分涵盖概率方面的背景知识.全书中所有的模型都是用概率的术语表示,概率是计算机视觉应用中一门很有用的语言.具有扎实工程数学背景的读者或许对这部分知识比较熟悉,但仍需要浏览这些章节以确保掌握相关的符号.那些尚不具备该背景的读者应该仔细阅读这些章节.这些知识相对比较简单,但它们是本书其余部分的基础.在正式提到计算机视觉知识前被迫阅读三十多页的数学虽然令人沮丧,但请相信我,这些基础知识将为后续的学习提供坚实的基础. 图1-2 章节依赖关系.

《计算机视觉:模型、学习和推理》一1.2 其他书籍

1.2 其他书籍 我知道大多数人不会单独依靠本书学习计算机视觉,所以这里推荐几本其他的书籍,以便弥补本书的不足.要了解更多关于机器学习和图模型的知识,我推荐将Bishop(2006)所著的<Pattern Recognition and Machine Learning>作为一个很好的切入点.在关于图像预处理的许多著作中,我最喜欢的是Nixon和Aguado所编著的<Feature Extraction and Image Processing>(2008).毫无疑问,关于几何计算

《计算机视觉:模型、学习和推理》——1.2 其他书籍

1.2 其他书籍 我知道大多数人不会单独依靠本书学习计算机视觉,所以这里推荐几本其他的书籍,以便弥补本书的不足.要了解更多关于机器学习和图模型的知识,我推荐将Bishop(2006)所著的<Pattern Recognition and Machine Learning>作为一个很好的切入点.在关于图像预处理的许多著作中,我最喜欢的是Nixon和Aguado所编著的<Feature Extraction and Image Processing>(2008).毫无疑问,关于几何计算