中国人工智能学会通讯——当知识图谱“遇见”深度学习 1.1 知识图谱与深度学习融合的历史背景

大数据时代的到来,为人工智能的飞速 发展带来前所未有的数据红利。在大数据的 “喂养”下,人工智能技术获得了前所未有 的长足进步。其进展突出体现在以知识图谱 为代表的知识工程以及深度学习为代表的机 器学习等相关领域。随着深度学习对于大数 据的红利消耗殆尽,深度学习模型效果的天 花板日益迫近。另一方面大量知识图谱不断 涌现,这些蕴含人类大量先验知识的宝库却 尚未被深度学习有效利用。融合知识图谱与 深度学习,已然成为进一步提升深度学习模 型效果的重要思路之一。以知识图谱为代表 的符号主义,以深度学习为代表的联结主义, 日益脱离原先各自独立发展的轨道,走上协 同并进的新道路。

1.1 知识图谱与深度学习融合的历史背景

大数据为机器学习,特别是深度学习带 来前所未有的数据红利。得益于大规模标 注数据,深度神经网络能够习得有效的层 次化特征表示,从而在图像识别等领域取 得优异效果。但是随着数据红利消失殆尽, 深度学习也日益体现出其局限性,尤其体 现在依赖大规模标注数据和难以有效利用 先验知识等方面。这些局限性阻碍了深度 学习的进一步发展。另一方面在深度学习 的大量实践中,人们越来越多地发现深度 学习模型的结果往往与人的先验知识或者 专家知识相冲突。如何让深度学习摆脱对 于大规模样本的依赖?如何让深度学习模 型有效利用大量存在的先验知识?如何让 深度学习模型的结果与先验知识一致已成 为了当前深度学习领域的重要问题。

当前,人类社会业已积累大量知识。 特别是,近几年在知识图谱技术的推动下, 对于机器友好的各类在线知识图谱大量涌现。知识图谱本质上是一种语义网络,表达 了各类实体、概念及其之间的语义关系。相 对于传统知识表示形式(诸如本体、传统语 义网络),知识图谱具有实体/概念覆盖率高、 语义关系多样、结构友好 ( 通常表示为 RDF 格式 ) 以及质量较高等优势,从而使得知识 图谱日益成为大数据时代和人工智能时代最 为主要的知识表示方式。能否利用蕴含于知 识图谱中的知识指导深度神经网络模型的学 习从而提升模型的性能,成为了深度学习模 型研究的重要问题之一。

现阶段将深度学习技术应用于知识图 谱的方法较为直接。大量的深度学习模型 可以有效完成端到端的实体识别、关系抽 取和关系补全等任务,进而可以用来构建 或丰富知识图谱。本文主要探讨知识图谱 在深度学习模型中的应用,从当前的文献 来看,主要有两种方式。一是将知识图谱 中的语义信息输入到深度学习模型中;将 离散化知识图谱表达为连续化的向量,从 而使得知识图谱的先验知识能够成为深度 学习的输入。二是利用知识作为优化目标 的约束,指导深度学习模型的学习;通常 是将知识图谱中知识表达为优化目标的后 验正则项。前者的研究工作已有不少文献, 并成为当前研究热点。知识图谱向量表示 作为重要的特征在问答以及推荐等实际任 务中得到有效应用。后者的研究才刚刚起 步,本文将重点介绍以一阶谓词逻辑作为 约束的深度学习模型。

时间: 2024-11-01 10:18:57

中国人工智能学会通讯——当知识图谱“遇见”深度学习 1.1 知识图谱与深度学习融合的历史背景的相关文章

中国人工智能学会通讯——机器学习里的贝叶斯基本理论、模型和算法

非常感 谢周老师给这个机会让我跟大家分享一下.我今天想和大家分享的是,在深度学习或者大数据环境下我们怎么去看待相对来说比较传统的一类方法--贝叶斯方法.它是在机器学习和人工智能里比较经典的方法. 类似的报告我之前在CCF ADL讲过,包括去年暑假周老师做学术主任在广州有过一次报告,大家如果想看相关的工作,我们写了一篇文章,正好我今天讲的大部分思想在这个文章里面有一个更系统的讲述,大家可以下去找这篇文章读. 这次分享主要包括三个部分: 第一部分:基本理论.模型和算法 贝叶斯方法基础 正则化贝叶斯推

中国人工智能学会通讯——无智能,不驾驶——面向未来的智能驾驶时代 ( 下 )

到目前为止似乎比较完美,而实际还 存在着一些问题.我们现在看到很多道 路上面,交通标志牌它的分布非常稀疏, 可能每过一两公里才能够检测出来一个 交通标志牌,因为毕竟这个深度学习算 法是目前最完美的,它有时候还会错过 一个交通标志牌,这时候怎么办呢?我 们会发现在路面上也有非常明显的视觉 特征,我只要把路面的这些视觉特征识 别出来进行匹配,其实是有连续的绝对 的视觉参考的.所以我们做的办法是, 把这个路面粘贴起来.这个粘贴的方法 很简单,跟我们手机拍场景图片一样, 我们慢慢移动的时候可以把这个场景

中国人工智能学会通讯——深蓝、沃森与AlphaGo

在 2016 年 3 月 份,正当李 世石与AlphaGo 进行人机大战的时候,我曾经写过 一 篇< 人 工 智 能 的 里 程 碑: 从 深 蓝 到AlphaGo>,自从 1997 年深蓝战胜卡斯帕罗夫之后,随着计算机硬件水平的提高,计算机象棋(包括国际象棋和中国象棋)水平有了很大的提高,达到了可以战胜人类最高棋手的水平.但是,长期以来,在计算机围棋上进展却十分缓慢,在 2006 年引入了蒙特卡洛树搜索方法之后,也只能达到业余 5 段的水平.所以 AlphaGo 战胜韩国棋手李世石,确实是人

中国人工智能学会通讯——智创未来 未来已来

2016 年带着我们难忘的记忆,就这样翻篇了.由我们学会发起.全国多个组织积极参与的.纪念全球人工智能 60 年的一个个系列活动历历在目,在我们身边发生的种种无人驾驶的比赛和试验活动还在让我们激动不已,AlphaGo 战胜人类围棋冠军李世石的震荡被 Master 的新战绩推向又一个新高潮,时间就这样把我们带入了新的一年--2017 年. 对 2017 年的人工智能,我们会有什么期待呢? 深度学习会火 无人驾驶会火 机器人产业会火 机器同传会火 人机博弈会火 交互认知会火 不确定性人工智能会火 智

中国人工智能学会通讯——着力突破与创新 实现超越与引领

提 要 2016年3月,围棋人机大战的结果,在舆论界激起了惊涛骇浪:在科技界也引起了强烈反响.为了把握人工智能的发展现状和规律,探讨我国人工智能的发展战略,在中国人工智能学会和众多人工智能同行的支持下,由本文作者出面申请了一次高层战略研讨会,这就是以"发展人工智能,引领科技创新"为主题的香山科学会议.与会者同气相求.同心协力,站在国家战略的高度,以纵览全球的视野,通过深入的研讨和论证,凝聚了诸多宝贵的共识,形成了直送中央的<关于加快发展我国人工智能的专家建议>.本文简要介绍

中国人工智能学会通讯——深度学习与视觉计算 1.3 计算机视觉领域利用深度学习可能带来的未来研究方向

1.3 计算机视觉领域利用深度学习可能带来的未来研究方向 第一个,深度图像分析.目前基于深度 学习的图像算法在实验数据库上效果还是 不错的,但是远远不能够满足实际大规模 应用需求,需要进一步的提升算法性能从 而能够转化相应的实际应用.比如这个基 于图片的应用,可以估计性别和年龄,但 是其实经常会犯错,因此需要进一步提升 深度图像分析的性能. 第二个,深度视频分析.视频分析牵扯 到大量的数据和计算量,所以做起来更加 麻烦.当前深度视频分析还处于起步的阶 段,然而视频应用非常广泛,比如人机交互. 智

中国人工智能学会通讯——2016机器智能前沿论坛召开

2016 年 12 月 17 日,由中国人工智能学会.中国工程院战略咨询中心主办,今日头条.IEEE<计算科学评论>协办的"2016机器智能前沿论坛"暨"2016 BYTE CUP国际机器学习竞赛颁奖仪式"在中国工程院举办.论坛嘉宾包括中外顶尖的数据挖掘.机器学习,以及自然语言处理方向的专家学者. 与以往不同,本次论坛除介绍机器学习的重大进展和应用外,还着重讨论了机器学习技术在媒体数据上的应用,并为2016 BYTE CUP 国际机器学习竞赛的获奖选手进

中国人工智能学会通讯——Master虽优势较多 但仍有缺陷

近日,Master 在各大围棋网站横扫顶尖职业棋手,随后,谷歌 DeepMind 创始人德米什 • 哈萨比斯在 Twitter 上发布消息,证实了 Master 是 AlphaGo 的升级版.众所周知,围棋困难的地方在于它的估值函数非常不平滑,差一个子盘面就可能天翻地覆:同时状态空间大,也没有全局的结构.这两点加起来,迫使目前计算机只能用穷举法,并且因此进展缓慢.但人能下得好,能在几百个选择中知道哪几个位置值得考虑,说明它的估值函数是有规律的.这些规律远远不是几条简单公式所能概括,但所需的信息量

中国人工智能学会通讯——混合智能概念与新进展

脑科学以阐明脑的工作原理为目标,近年来已成为最重要的科学前沿领域之一.脑功能计算.脑智能模仿再度成为学术界和产业界热议话题[1-4].欧盟.美国.日本相继启动了大型脑研究计划,强有力推动了人们对脑结构.脑功能和脑智能的探索和认识:另一方面,人工智能研究风起云涌,最近一个标志性事件是谷歌的AlphaGo以4:1战胜围棋世界冠军李世石[5],实现了围棋人工智能领域史无前例的突破.2016年9月斯坦福大学发布了<2030年的人工智能与生活>报告[6],全面评估了当前人工智能的进展.挑战.机遇与展望.