深入理解Java内存模型(六)——final

与前面介绍的锁和volatile相比较,对final域的读和写更像是普通的变量访问。对于final域,编译器和处理器要遵守两个重排序规则:

  1. 在构造函数内对一个final域的写入,与随后把这个被构造对象的引用赋值给一个引用变量,这两个操作之间不能重排序。
  2. 初次读一个包含final域的对象的引用,与随后初次读这个final域,这两个操作之间不能重排序。

下面,我们通过一些示例性的代码来分别说明这两个规则:


public class FinalExample {
    int i;                            //普通变量
    final int j;                      //final变量
    static FinalExample obj;

    public void FinalExample () {     //构造函数
        i = 1;                        //写普通域
        j = 2;                        //写final域
    }

    public static void writer () {    //写线程A执行
        obj = new FinalExample ();
    }

    public static void reader () {       //读线程B执行
        FinalExample object = obj;       //读对象引用
        int a = object.i;                //读普通域
        int b = object.j;                //读final域
    }
}

这里假设一个线程A执行writer ()方法,随后另一个线程B执行reader ()方法。下面我们通过这两个线程的交互来说明这两个规则。

写final域的重排序规则

写final域的重排序规则禁止把final域的写重排序到构造函数之外。这个规则的实现包含下面2个方面:

  • JMM禁止编译器把final域的写重排序到构造函数之外。
  • 编译器会在final域的写之后,构造函数return之前,插入一个StoreStore屏障。这个屏障禁止处理器把final域的写重排序到构造函数之外。

现在让我们分析writer ()方法。writer ()方法只包含一行代码:finalExample = new FinalExample ()。这行代码包含两个步骤:

  1. 构造一个FinalExample类型的对象;
  2. 把这个对象的引用赋值给引用变量obj。

假设线程B读对象引用与读对象的成员域之间没有重排序(马上会说明为什么需要这个假设),下图是一种可能的执行时序:

在上图中,写普通域的操作被编译器重排序到了构造函数之外,读线程B错误的读取了普通变量i初始化之前的值。而写final域的操作,被写final域的重排序规则“限定”在了构造函数之内,读线程B正确的读取了final变量初始化之后的值。

写final域的重排序规则可以确保:在对象引用为任意线程可见之前,对象的final域已经被正确初始化过了,而普通域不具有这个保障。以上图为
例,在读线程B“看到”对象引用obj时,很可能obj对象还没有构造完成(对普通域i的写操作被重排序到构造函数外,此时初始值2还没有写入普通域
i)。

读final域的重排序规则

读final域的重排序规则如下:

  • 在一个线程中,初次读对象引用与初次读该对象包含的final域,JMM禁止处理器重排序这两个操作(注意,这个规则仅仅针对处理器)。编译器会在读final域操作的前面插入一个LoadLoad屏障。

初次读对象引用与初次读该对象包含的final域,这两个操作之间存在间接依赖关系。由于编译器遵守间接依赖关系,因此编译器不会重排序这两个操
作。大多数处理器也会遵守间接依赖,大多数处理器也不会重排序这两个操作。但有少数处理器允许对存在间接依赖关系的操作做重排序(比如alpha处理
器),这个规则就是专门用来针对这种处理器。

reader()方法包含三个操作:

  1. 初次读引用变量obj;
  2. 初次读引用变量obj指向对象的普通域j。
  3. 初次读引用变量obj指向对象的final域i。

现在我们假设写线程A没有发生任何重排序,同时程序在不遵守间接依赖的处理器上执行,下面是一种可能的执行时序:

在上图中,读对象的普通域的操作被处理器重排序到读对象引用之前。读普通域时,该域还没有被写线程A写入,这是一个错误的读取操作。而读final
域的重排序规则会把读对象final域的操作“限定”在读对象引用之后,此时该final域已经被A线程初始化过了,这是一个正确的读取操作。

读final域的重排序规则可以确保:在读一个对象的final域之前,一定会先读包含这个final域的对象的引用。在这个示例程序中,如果该引用不为null,那么引用对象的final域一定已经被A线程初始化过了。

如果final域是引用类型

上面我们看到的final域是基础数据类型,下面让我们看看如果final域是引用类型,将会有什么效果?

请看下列示例代码:


public class FinalReferenceExample {
final int[] intArray;                     //final是引用类型
static FinalReferenceExample obj;

public FinalReferenceExample () {        //构造函数
    intArray = new int[1];              //1
    intArray[0] = 1;                   //2
}

public static void writerOne () {          //写线程A执行
    obj = new FinalReferenceExample ();  //3
}

public static void writerTwo () {          //写线程B执行
    obj.intArray[0] = 2;                 //4
}

public static void reader () {              //读线程C执行
    if (obj != null) {                    //5
        int temp1 = obj.intArray[0];       //6
    }
}
}

这里final域为一个引用类型,它引用一个int型的数组对象。对于引用类型,写final域的重排序规则对编译器和处理器增加了如下约束:

  1. 在构造函数内对一个final引用的对象的成员域的写入,与随后在构造函数外把这个被构造对象的引用赋值给一个引用变量,这两个操作之间不能重排序。

对上面的示例程序,我们假设首先线程A执行writerOne()方法,执行完后线程B执行writerTwo()方法,执行完后线程C执行reader ()方法。下面是一种可能的线程执行时序:

在上图中,1是对final域的写入,2是对这个final域引用的对象的成员域的写入,3是把被构造的对象的引用赋值给某个引用变量。这里除了前面提到的1不能和3重排序外,2和3也不能重排序。

JMM可以确保读线程C至少能看到写线程A在构造函数中对final引用对象的成员域的写入。即C至少能看到数组下标0的值为1。而写线程B对数组
元素的写入,读线程C可能看的到,也可能看不到。JMM不保证线程B的写入对读线程C可见,因为写线程B和读线程C之间存在数据竞争,此时的执行结果不可
预知。

如果想要确保读线程C看到写线程B对数组元素的写入,写线程B和读线程C之间需要使用同步原语(lock或volatile)来确保内存可见性。

为什么final引用不能从构造函数内“逸出”

前面我们提到过,写final域的重排序规则可以确保:在引用变量为任意线程可见之前,该引用变量指向的对象的final域已经在构造函数中被正确
初始化过了。其实要得到这个效果,还需要一个保证:在构造函数内部,不能让这个被构造对象的引用为其他线程可见,也就是对象引用不能在构造函数中“逸
出”。为了说明问题,让我们来看下面示例代码:


public class FinalReferenceEscapeExample {
final int i;
static FinalReferenceEscapeExample obj;

public FinalReferenceEscapeExample () {
    i = 1;                              //1写final域
    obj = this;                          //2 this引用在此“逸出”
}

public static void writer() {
    new FinalReferenceEscapeExample ();
}

public static void reader {
    if (obj != null) {                     //3
        int temp = obj.i;                 //4
    }
}
}

假设一个线程A执行writer()方法,另一个线程B执行reader()方法。这里的操作2使得对象还未完成构造前就为线程B可见。即使这里的
操作2是构造函数的最后一步,且即使在程序中操作2排在操作1后面,执行read()方法的线程仍然可能无法看到final域被初始化后的值,因为这里的
操作1和操作2之间可能被重排序。实际的执行时序可能如下图所示:

从上图我们可以看出:在构造函数返回前,被构造对象的引用不能为其他线程可见,因为此时的final域可能还没有被初始化。在构造函数返回后,任意线程都将保证能看到final域正确初始化之后的值。

final语义在处理器中的实现

现在我们以x86处理器为例,说明final语义在处理器中的具体实现。

上面我们提到,写final域的重排序规则会要求译编器在final域的写之后,构造函数return之前,插入一个StoreStore障屏。读final域的重排序规则要求编译器在读final域的操作前面插入一个LoadLoad屏障。

由于x86处理器不会对写-写操作做重排序,所以在x86处理器中,写final域需要的StoreStore障屏会被省略掉。同样,由于x86处
理器不会对存在间接依赖关系的操作做重排序,所以在x86处理器中,读final域需要的LoadLoad屏障也会被省略掉。也就是说在x86处理器
中,final域的读/写不会插入任何内存屏障!

JSR-133为什么要增强final的语义

在旧的Java内存模型中
,最严重的一个缺陷就是线程可能看到final域的值会改变。比如,一个线程当前看到一个整形final域的值为0(还未初始化之前的默认值),过一段时
间之后这个线程再去读这个final域的值时,却发现值变为了1(被某个线程初始化之后的值)。最常见的例子就是在旧的Java内存模型中,String
的值可能会改变(参考文献2中有一个具体的例子,感兴趣的读者可以自行参考,这里就不赘述了)。

为了修补这个漏洞,JSR-133专家组增强了final的语义。通过为final域增加写和读重排序规则,可以为java程序员提供初始化安全保
证:只要对象是正确构造的(被构造对象的引用在构造函数中没有“逸出”),那么不需要使用同步(指lock和volatile的使用),就可以保证任意线
程都能看到这个final域在构造函数中被初始化之后的值。

参考文献

  1.  JSR 133 (Java Memory Model) FAQ
  2.  Java Concurrency in Practice
  3.  The JSR-133 Cookbook for Compiler Writers
  4. Intel 64 and IA-32 ArchitecturesvSoftware Developer’s Manual Volume 3A: System Programming Guide, Part 1

文章转自 并发编程网-ifeve.com

时间: 2024-09-26 13:16:07

深入理解Java内存模型(六)——final的相关文章

深入理解Java内存模型(六) final

与前面介绍的锁和volatile相比较,对final域的读和写更像是普通的变量访问.对于final域,编译 器和处理器要遵守两个重排序规则: 在构造函数内对一个final域的写入,与随后把这个被构造对象的引用赋值给一个引用变量,这两个操 作之间不能重排序. 初次读一个包含final域的对象的引用,与随后初次读这个final域,这两个操作之间不能重排序. 下面,我们通过一些示例性的代码来分别说明这两个规则: public class FinalExample { int i; //普通变量 fin

深入理解Java内存模型系列篇

[本文转载于深入理解Java内存模型,可点击每个章节标题查看原文] 深入理解Java内存模型(一)--基础 并发编程模型的分类 在并发编程中,我们需要处理两个关键问题:线程之间如何通信及线程之间如何同步(这里的线程是指并发执行的活动实体).通信是指线程之间以何种机制来交换信息.在命令式编程中,线程之间的通信机制有两种:共享内存和消息传递. 在共享内存的并发模型里,线程之间共享程序的公共状态,线程之间通过写-读内存中的公共状态来隐式进行通信.在消息传递的并发模型里,线程之间没有公共状态,线程之间必

深入理解java内存模型系列文章

深入理解java内存模型系列文章是本人在InfoQ发表的并发编程的连载文章. 深入理解java内存模型(一)--基础 深入理解java内存模型(二)--重排序 深入理解java内存模型(三)--顺序一致性 深入理解java内存模型(四)--volatile 深入理解java内存模型(五)--锁 深入理解java内存模型(六)--final 深入理解java内存模型(七)--总结 提纲 java线程之间的通信对程序员完全透明,内存可见性问题很容易困扰java程序员,本文试图揭开java内存模型神秘

深入理解Java内存模型(四) volatile

volatile的特性 当我们声明共享变量为volatile后,对这个变量的读/写将会很特别.理解 volatile特性的一个好方法是:把对volatile变量的单个读/写,看成是使用同一个监视器锁对这些单个 读/写操作做了同步.下面我们通过具体的示例来说明,请看下面的示例代码: class VolatileFeaturesExample { volatile long vl = 0L; //使用volatile声明64位的long型变量 public void set(long l) { vl

深入理解Java内存模型(五) 锁

锁的释放-获取建立的happens before 关系 锁是java并发编程中最重要的同步机制.锁除了让 临界区互斥执行外,还可以让释放锁的线程向获取同一个锁的线程发送消息. 下面是锁释放-获取 的示例代码: class MonitorExample { int a = 0; public synchronized void writer() { //1 a++; //2 } //3 public synchronized void reader() { //4 int i = a; //5 -

深入理解Java内存模型(二) 重排序

如果两个操作访问同一个变量,且这两个操作中有一个为写操作,此时这两个操作之间就存在数据依 赖性.数据依赖分下列三种类型: 上 面三种情况,只要重排序两个操作的执行顺序,程序的执行结果将会被改变. 前面提到过,编译 器和处理器可能会对操作做重排序.编译器和处理器在重排序时,会遵守数据依赖性,编译器和处理器不 会改变存在数据依赖关系的两个操作的执行顺序. 注意,这里所说的数据依赖性仅针对单个处理 器中执行的指令序列和单个线程中执行的操作,不同处理器之间和不同线程之间的数据依赖性不被编译器 和处理器考

深入理解Java内存模型(三) 顺序一致性

数据竞争与顺序一致性保证 当程序未正确同步时,就会存在数据竞争.java内存模型规范对数 据竞争的定义如下: 在一个线程中写一个变量, 在另一个线程读同一个变量, 而且写和读没有通过同步来排序. 当代码中包含数据竞争时,程序的执行往往产生违反直觉的结果(前一章的示例正是如此).如果一 个多线程程序能正确同步,这个程序将是一个没有数据竞争的程序. JMM对正确同步的多线程程序 的内存一致性做了如下保证: 如果程序是正确同步的,程序的执行将具有顺序一致性(sequentially consisten

深入理解Java内存模型(三)——顺序一致性

数据竞争与顺序一致性保证 当程序未正确同步时,就会存在数据竞争.java内存模型规范对数据竞争的定义如下: 在一个线程中写一个变量, 在另一个线程读同一个变量, 而且写和读没有通过同步来排序. 当代码中包含数据竞争时,程序的执行往往产生违反直觉的结果(前一章的示例正是如此).如果一个多线程程序能正确同步,这个程序将是一个没有数据竞争的程序. JMM对正确同步的多线程程序的内存一致性做了如下保证: 如果程序是正确同步的,程序的执行将具有顺序一致性(sequentially consistent)–

深入理解Java内存模型(一) 基础

并发编程模型的分类 在并发编程中,我们需要处理两个关键问题:线程之间如何通信及线程之 间如何同步(这里的线程是指并发执行的活动实体).通信是指线程之间以何种机制来交换信息.在命令 式编程中,线程之间的通信机制有两种:共享内存和消息传递. 在共享内存的并发模型里,线程 之间共享程序的公共状态,线程之间通过写-读内存中的公共状态来隐式进行通信.在消息传递的并发模 型里,线程之间没有公共状态,线程之间必须通过明确的发送消息来显式进行通信. 同步是指程 序用于控制不同线程之间操作发生相对顺序的机制.在共