对于Python中线程问题的简单讲解_python

我们将会看到一些在Python中使用线程的实例和如何避免线程之间的竞争。你应当将下边的例子运行多次,以便可以注意到线程是不可预测的和线程每次运行出的不同结果。声明:从这里开始忘掉你听到过的关于GIL的东西,因为GIL不会影响到我想要展示的东西。

示例1

我们将要请求五个不同的url:
单线程
 

import time
import urllib2

def get_responses():
 urls = [
  'http://www.google.com',
  'http://www.amazon.com',
  'http://www.ebay.com',
  'http://www.alibaba.com',
  'http://www.reddit.com'
 ]
 start = time.time()
 for url in urls:
  print url
  resp = urllib2.urlopen(url)
  print resp.getcode()
 print "Elapsed time: %s" % (time.time()-start)

get_responses()

输出是:
 

http://www.google.com 200
http://www.amazon.com 200
http://www.ebay.com 200
http://www.alibaba.com 200
http://www.reddit.com 200
Elapsed time: 3.0814409256

解释:

  •     url顺序的被请求
  •     除非cpu从一个url获得了回应,否则不会去请求下一个url
  •     网络请求会花费较长的时间,所以cpu在等待网络请求的返回时间内一直处于闲置状态。

多线程
 

import urllib2
import time
from threading import Thread

class GetUrlThread(Thread):
 def __init__(self, url):
  self.url = url
  super(GetUrlThread, self).__init__()

 def run(self):
  resp = urllib2.urlopen(self.url)
  print self.url, resp.getcode()

def get_responses():
 urls = [
  'http://www.google.com',
  'http://www.amazon.com',
  'http://www.ebay.com',
  'http://www.alibaba.com',
  'http://www.reddit.com'
 ]
 start = time.time()
 threads = []
 for url in urls:
  t = GetUrlThread(url)
  threads.append(t)
  t.start()
 for t in threads:
  t.join()
 print "Elapsed time: %s" % (time.time()-start)

get_responses()

输出:
 

http://www.reddit.com 200
http://www.google.com 200
http://www.amazon.com 200
http://www.alibaba.com 200
http://www.ebay.com 200
Elapsed time: 0.689890861511

解释:

  •     意识到了程序在执行时间上的提升
  •     我们写了一个多线程程序来减少cpu的等待时间,当我们在等待一个线程内的网络请求返回时,这时cpu可以切换到其他线程去进行其他线程内的网络请求。
  •     我们期望一个线程处理一个url,所以实例化线程类的时候我们传了一个url。
  •     线程运行意味着执行类里的run()方法。
  •     无论如何我们想每个线程必须执行run()。
  •     为每个url创建一个线程并且调用start()方法,这告诉了cpu可以执行线程中的run()方法了。
  •     我们希望所有的线程执行完毕的时候再计算花费的时间,所以调用了join()方法。
  •     join()可以通知主线程等待这个线程结束后,才可以执行下一条指令。
  •     每个线程我们都调用了join()方法,所以我们是在所有线程执行完毕后计算的运行时间。

关于线程:

  •     cpu可能不会在调用start()后马上执行run()方法。
  •     你不能确定run()在不同线程建间的执行顺序。
  •     对于单独的一个线程,可以保证run()方法里的语句是按照顺序执行的。
  •     这就是因为线程内的url会首先被请求,然后打印出返回的结果。

实例2

我们将会用一个程序演示一下多线程间的资源竞争,并修复这个问题。
 

from threading import Thread

#define a global variable
some_var = 0

class IncrementThread(Thread):
 def run(self):
  #we want to read a global variable
  #and then increment it
  global some_var
  read_value = some_var
  print "some_var in %s is %d" % (self.name, read_value)
  some_var = read_value + 1
  print "some_var in %s after increment is %d" % (self.name, some_var)

def use_increment_thread():
 threads = []
 for i in range(50):
  t = IncrementThread()
  threads.append(t)
  t.start()
 for t in threads:
  t.join()
 print "After 50 modifications, some_var should have become 50"
 print "After 50 modifications, some_var is %d" % (some_var,)

use_increment_thread()

多次运行这个程序,你会看到多种不同的结果。

解释:

  •     有一个全局变量,所有的线程都想修改它。
  •     所有的线程应该在这个全局变量上加 1 。
  •     有50个线程,最后这个数值应该变成50,但是它却没有。

为什么没有达到50?

  •     在some_var是15的时候,线程t1读取了some_var,这个时刻cpu将控制权给了另一个线程t2。
  •     t2线程读到的some_var也是15
  •     t1和t2都把some_var加到16
  •     当时我们期望的是t1 t2两个线程使some_var + 2变成17
  •     在这里就有了资源竞争。
  •     相同的情况也可能发生在其它的线程间,所以出现了最后的结果小于50的情况。

解决资源竞争
 

from threading import Lock, Thread
lock = Lock()
some_var = 0

class IncrementThread(Thread):
 def run(self):
  #we want to read a global variable
  #and then increment it
  global some_var
  lock.acquire()
  read_value = some_var
  print "some_var in %s is %d" % (self.name, read_value)
  some_var = read_value + 1
  print "some_var in %s after increment is %d" % (self.name, some_var)
  lock.release()

def use_increment_thread():
 threads = []
 for i in range(50):
  t = IncrementThread()
  threads.append(t)
  t.start()
 for t in threads:
  t.join()
 print "After 50 modifications, some_var should have become 50"
 print "After 50 modifications, some_var is %d" % (some_var,)

use_increment_thread()

再次运行这个程序,达到了我们预期的结果。

解释:

  •     Lock 用来防止竞争条件
  •     如果在执行一些操作之前,线程t1获得了锁。其他的线程在t1释放Lock之前,不会执行相同的操作
  •     我们想要确定的是一旦线程t1已经读取了some_var,直到t1完成了修改some_var,其他的线程才可以读取some_var
  •     这样读取和修改some_var成了逻辑上的原子操作。

实例3

让我们用一个例子来证明一个线程不能影响其他线程内的变量(非全局变量)。

time.sleep()可以使一个线程挂起,强制线程切换发生。
 

from threading import Thread
import time

class CreateListThread(Thread):
 def run(self):
  self.entries = []
  for i in range(10):
   time.sleep(1)
   self.entries.append(i)
  print self.entries

def use_create_list_thread():
 for i in range(3):
  t = CreateListThread()
  t.start()

use_create_list_thread()

运行几次后发现并没有打印出争取的结果。当一个线程正在打印的时候,cpu切换到了另一个线程,所以产生了不正确的结果。我们需要确保print self.entries是个逻辑上的原子操作,以防打印时被其他线程打断。

我们使用了Lock(),来看下边的例子。
 

from threading import Thread, Lock
import time

lock = Lock()

class CreateListThread(Thread):
 def run(self):
  self.entries = []
  for i in range(10):
   time.sleep(1)
   self.entries.append(i)
  lock.acquire()
  print self.entries
  lock.release()

def use_create_list_thread():
 for i in range(3):
  t = CreateListThread()
  t.start()

use_create_list_thread()

这次我们看到了正确的结果。证明了一个线程不可以修改其他线程内部的变量(非全局变量)。

以上是小编为您精心准备的的内容,在的博客、问答、公众号、人物、课程等栏目也有的相关内容,欢迎继续使用右上角搜索按钮进行搜索python
线程
盈亏问题的最简单讲解、java多线程讲解、多线程讲解、vb.net线程详细讲解、java线程讲解,以便于您获取更多的相关知识。

时间: 2024-10-26 13:54:50

对于Python中线程问题的简单讲解_python的相关文章

Python中线程编程之threading模块的使用详解

  这篇文章主要介绍了Python中线程编程之threading模块的使用详解,由于GIL的存在,线程一直是Python编程中的焦点问题,需要的朋友可以参考下 threading.Thread Thread 是threading模块中最重要的类之一,可以使用它来创建线程.有两种方式来创建线程:一种是通过继承Thread类,重写它的run方法;另一种是创建一个threading.Thread对象,在它的初始化函数(__init__)中将可调用对象作为参数传入.下面分别举例说明.先来看看通过继承th

简单介绍Python中的len()函数的使用_python

函数:len() 1:作用:返回字符串.列表.字典.元组等长度 2:语法:len(str) 3:参数:str:要计算的字符串.列表.字典.元组等 4:返回值:字符串.列表.字典.元组等元素的长度 5:实例5.1.计算字符串的长度: >>> s = "hello good boy doiido" >>> len(s) 21 5.2.计算列表的元素个数: >>> l = ['h','e','l','l','o'] >>>

Python中多线程及程序锁浅析_python

Python中多线程使用到Threading模块.Threading模块中用到的主要的类是Thread,我们先来写一个简单的多线程代码: 复制代码 代码如下: # coding : uft-8 __author__ = 'Phtih0n' import threading class MyThread(threading.Thread):     def __init__(self):         threading.Thread.__init__(self)     def run(sel

Python中的魔法方法深入理解_python

接触Python也有一段时间了,Python相关的框架和模块也接触了不少,希望把自己接触到的自己 觉得比较好的设计和实现分享给大家,于是取了一个"Charming Python"的小标,算是给自己开了一个头吧, 希望大家多多批评指正. :) from flask import request Flask 是一个人气非常高的Python Web框架,笔者也拿它写过一些大大小小的项目,Flask 有一个特性我非常的喜欢,就是无论在什么地方,如果你想要获取当前的request对象,只要 简单

归纳整理Python中的控制流语句的知识点_python

程序流 Python 解释器在其最简单的级别,以类似的方式操作,即从程序的顶端开始,然后一行一行地顺序执行程序语句.例如,清单 1 展示了几个简单的语句.当把它们键入 Python 解释器中(或者将它们保存在一个文件中,并作为一个 Python 程序来执行)时,读取语句的顺序是从左到右. 当读到一个行结束符(比如换行符)时,Python 解释器就前进到下一行并继续,直到没有了代码行. 清单 1. 一个简单的 Python 程序 >>> i = 1 >>> type(i)

python中 ? : 三元表达式的使用介绍_python

(1) variable = a if exper else b(2)variable = (exper and [b] or [c])[0](2) variable = exper and b or c 上面三种用法都可以达到目的,类似C语言中 variable = exper ? b : c;即:如果exper表达式的值为true则variable = b,否则,variable = c 例如: 复制代码 代码如下: a,b=1,2max = (a if a > b else b)max =

简述Python中的面向对象编程的概念_python

面向对象编程--Object Oriented Programming,简称OOP,是一种程序设计思想.OOP把对象作为程序的基本单元,一个对象包含了数据和操作数据的函数. 面向过程的程序设计把计算机程序视为一系列的命令集合,即一组函数的顺序执行.为了简化程序设计,面向过程把函数继续切分为子函数,即把大块函数通过切割成小块函数来降低系统的复杂度. 而面向对象的程序设计把计算机程序视为一组对象的集合,而每个对象都可以接收其他对象发过来的消息,并处理这些消息,计算机程序的执行就是一系列消息在各个对象

python中sets模块的用法实例_python

本文实例简单讲述了python中sets模块的用法,分享给大家供大家参考. 具体方法如下: import sets magic_chars = sets.Set('abracadabra') print magic_chars poping_chars = sets.Set('supercalifragilisticeexpialidocious') print poping_chars print "".join(magic_chars & poping_chars) 程序运

Python中的闭包实例详解_python

一般来说闭包这个概念在很多语言中都有涉及,本文主要谈谈python中的闭包定义及相关用法.Python中使用闭包主要是在进行函数式开发时使用.详情分析如下: 一.定义 python中的闭包从表现形式上定义(解释)为:如果在一个内部函数里,对在外部作用域(但不是在全局作用域)的变量进行引用,那么内部函数就被认为是闭包(closure).这个定义是相对直白的,好理解的,不像其他定义那样学究味道十足(那些学究味道重的解释,在对一个名词的解释过程中又充满了一堆让人抓狂的其他陌生名词,不适合初学者).下面