机器学习算法汇总:人工神经网络、深度学习及其它

  学习方式

  根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果。

  监督式学习:

  

  在监督式学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中“垃圾邮件”“非垃圾邮件”,对手写数字识别中的“1“,”2“,”3“,”4“等。在建立预测模型的时候,监督式学习建立一个学习过程,将预测结果与“训练数据”的实际结果进行比较,不断的调整预测模型,直到模型的预测结果达到一个预期的准确率。监督式学习的常见应用场景如分类问题和回归问题。常见算法有逻辑回归(Logistic Regression)和反向传递神经网络(Back Propagation Neural Network)

  非监督式学习:

  

  在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。常见的应用场景包括关联规则的学习以及聚类等。常见算法包括Apriori算法以及k-Means算法。

  半监督式学习:

  

  在此学习方式下,输入数据部分被标识,部分没有被标识,这种学习模型可以用来进行预测,但是模型首先需要学习数据的内在结构以便合理的组织数据来进行预测。应用场景包括分类和回归,算法包括一些对常用监督式学习算法的延伸,这些算法首先试图对未标识数据进行建模,在此基础上再对标识的数据进行预测。如图论推理算法(Graph Inference)或者拉普拉斯支持向量机(Laplacian SVM.)等。

  强化学习:

  

  在这种学习模式下,输入数据作为对模型的反馈,不像监督模型那样,输入数据仅仅是作为一个检查模型对错的方式,在强化学习下,输入数据直接反馈到模型,模型必须对此立刻作出调整。常见的应用场景包括动态系统以及机器人控制等。常见算法包括Q-Learning以及时间差学习(Temporal difference learning)

  在企业数据应用的场景下, 人们最常用的可能就是监督式学习和非监督式学习的模型。 在图像识别等领域,由于存在大量的非标识的数据和少量的可标识数据, 目前半监督式学习是一个很热的话题。 而强化学习更多的应用在机器人控制及其他需要进行系统控制的领域。

  算法类似性

  根据算法的功能和形式的类似性,我们可以把算法分类,比如说基于树的算法,基于神经网络的算法等等。当然,机器学习的范围非常庞大,有些算法很难明确归类到某一类。而对于有些分类来说,同一分类的算法可以针对不同类型的问题。这里,我们尽量把常用的算法按照最容易理解的方式进行分类。

  回归算法

  

  回归算法是试图采用对误差的衡量来探索变量之间的关系的一类算法。回归算法是统计机器学习的利器。在机器学习领域,人们说起回归,有时候是指一类问题,有时候是指一类算法,这一点常常会使初学者有所困惑。常见的回归算法包括:最小二乘法(Ordinary Least Square),逻辑回归(Logistic Regression),逐步式回归(Stepwise Regression),多元自适应回归样条(Multivariate Adaptive Regression Splines)以及本地散点平滑估计(Locally Estimated Scatterplot Smoothing)

  基于实例的算法

  

  基于实例的算法常常用来对决策问题建立模型,这样的模型常常先选取一批样本数据,然后根据某些近似性把新数据与样本数据进行比较。通过这种方式来寻找最佳的匹配。因此,基于实例的算法常常也被称为“赢家通吃”学习或者“基于记忆的学习”。常见的算法包括 k-Nearest Neighbor(KNN), 学习矢量量化(Learning Vector Quantization, LVQ),以及自组织映射算法(Self-Organizing Map , SOM)

  正则化方法

  

  正则化方法是其他算法(通常是回归算法)的延伸,根据算法的复杂度对算法进行调整。正则化方法通常对简单模型予以奖励而对复杂算法予以惩罚。常见的算法包括:Ridge Regression, Least Absolute Shrinkage and Selection Operator(LASSO),以及弹性网络(Elastic Net)。

  决策树学习

  

  决策树算法根据数据的属性采用树状结构建立决策模型, 决策树模型常常用来解决分类和回归问题。常见的算法包括:分类及回归树(Classification And Regression Tree, CART), ID3 (Iterative Dichotomiser 3), C4.5, Chi-squared Automatic Interaction Detection(CHAID), Decision Stump, 随机森林(Random Forest), 多元自适应回归样条(MARS)以及梯度推进机(Gradient Boosting Machine, GBM)

  贝叶斯方法

  

  贝叶斯方法算法是基于贝叶斯定理的一类算法,主要用来解决分类和回归问题。常见算法包括:朴素贝叶斯算法,平均单依赖估计(Averaged One-Dependence Estimators, AODE),以及Bayesian Belief Network(BBN)。

  基于核的算法

  

  基于核的算法中最著名的莫过于支持向量机(SVM)了。 基于核的算法把输入数据映射到一个高阶的向量空间, 在这些高阶向量空间里, 有些分类或者回归问题能够更容易的解决。 常见的基于核的算法包括:支持向量机(Support Vector Machine, SVM), 径向基函数(Radial Basis Function ,RBF), 以及线性判别分析(Linear Discriminate Analysis ,LDA)等。

  聚类算法

  

  聚类,就像回归一样,有时候人们描述的是一类问题,有时候描述的是一类算法。聚类算法通常按照中心点或者分层的方式对输入数据进行归并。所以的聚类算法都试图找到数据的内在结构,以便按照最大的共同点将数据进行归类。常见的聚类算法包括 k-Means算法以及期望最大化算法(Expectation Maximization, EM)。

  关联规则学习

  

  关联规则学习通过寻找最能够解释数据变量之间关系的规则,来找出大量多元数据集中有用的关联规则。常见算法包括 Apriori算法和Eclat算法等。

  人工神经网络

  

  人工神经网络算法模拟生物神经网络,是一类模式匹配算法。通常用于解决分类和回归问题。人工神经网络是机器学习的一个庞大的分支,有几百种不同的算法。(其中深度学习就是其中的一类算法,我们会单独讨论),重要的人工神经网络算法包括:感知器神经网络(Perceptron Neural Network), 反向传递(Back Propagation), Hopfield网络,自组织映射(Self-Organizing Map, SOM)。学习矢量量化(Learning Vector Quantization, LVQ)

  深度学习

  

  深度学习算法是对人工神经网络的发展。 在近期赢得了很多关注, 特别是 百度也开始发力深度学习后, 更是在国内引起了很多关注。 在计算能力变得日益廉价的今天,深度学习试图建立大得多也复杂得多的神经网络。很多深度学习的算法是半监督式学习算法,用来处理存在少量未标识数据的大数据集。常见的深度学习算法包括:受限波尔兹曼机(Restricted Boltzmann Machine, RBN), Deep Belief Networks(DBN),卷积网络(Convolutional Network), 堆栈式自动编码器(Stacked Auto-encoders)。

  降低维度算法

  

  像聚类算法一样,降低维度算法试图分析数据的内在结构,不过降低维度算法是以非监督学习的方式试图利用较少的信息来归纳或者解释数据。这类算法可以用于高维数据的可视化或者用来简化数据以便监督式学习使用。常见的算法包括:主成份分析(Principle Component Analysis, PCA),偏最小二乘回归(Partial Least Square Regression,PLS), Sammon映射,多维尺度(Multi-Dimensional Scaling, MDS), 投影追踪(Projection Pursuit)等。

  集成算法

  

  集成算法用一些相对较弱的学习模型独立地就同样的样本进行训练,然后把结果整合起来进行整体预测。集成算法的主要难点在于究竟集成哪些独立的较弱的学习模型以及如何把学习结果整合起来。这是一类非常强大的算法,同时也非常流行。常见的算法包括:Boosting, Bootstrapped Aggregation(Bagging), AdaBoost,堆叠泛化(Stacked Generalization, Blending),梯度推进机(Gradient Boosting Machine, GBM),随机森林(Random Forest)。

时间: 2024-10-03 00:59:12

机器学习算法汇总:人工神经网络、深度学习及其它的相关文章

【NIPS2017现场+数据也疯狂】最佳论文大奖公布,算法关注度超越深度学习排第一

本次直播由CMU计算机学院副教授马坚.斯坦福AI博士生.李飞飞教授的学生Jim Fan.杜克大学温伟为大家带来NIPS 2017全程直播.特别感谢Jim 提供照片. 参会人数从100激增到8500,不变的是创造智能的梦 三十一年,一代科学巨匠们的辉煌历史!主席说,他当年在Denver参加第一届NIPS的时候只有一百多人,而今年有超过8500人注册.人数在逐年指数增长,而唯一不变的是那古老的创造智能的梦. 这次大会共有2个并行的track,都分别包括oral和spotlight.新增了艺术创作大赛

资深算法工程师眼中的深度学习:Ian Goodfellow 和Yoshua Bengio的「Deep Learning」读书分享

雷锋网 AI 科技评论按:英雄式的科技公司 Tesla 和 SpaceX 的 CEO 埃隆·马斯克对人工智能技术和研究保持批评态度已经不是一天两天了.今年5月份钢铁侠说"90%的学术论文都毫无价值"的时候就引起了学术界的抗议,上个月又说人工智能技术是"人类文明史上面临的最大威胁",又引起了 Facebook CEO 马克·扎克伯格在内众多人工智能支持者的声讨. 当然了,马斯克并不是反科技,他自己也是人工智能研究组织 OpenAI 的发起人之一,他只是不像别人那么乐观

【机器学习PAI实践十】深度学习Caffe框架实现图像分类的模型训练

背景 我们在之前的文章中介绍过如何通过PAI内置的TensorFlow框架实验基于Cifar10的图像分类,文章链接:https://yq.aliyun.com/articles/72841.使用Tensorflow做深度学习做深度学习的网络搭建和训练需要通过PYTHON代码才能使用,对于不太会写代码的同学还是有一定的使用门槛的.本文将介绍另一个深度学习框架Caffe,通过Caffe只需要填写一些配置文件就可以实现图像分类的模型训练. 关于PAI的深度学习功能开通,请务必提前阅读https://

推荐系统主要算法总结及Youtube深度学习推荐算法实例概括

协同过滤 协同过滤(CF)及其变式是最常用的推荐算法之一.即使是数据科学的初学者,也能凭之建立起自己的个性化电影推荐系统,例如,一个简历项目. 当我们想要向某个用户推荐某物时,最合乎情理的事情就是找到与他/她具有相同爱好的用户,分析其行为,并且为之推荐相同的东西.或者我们可以关注那些与该用户之前购买物品相似的东西,并推荐相似的产品. 协同过滤(CF)有两种基本方法,它们分别是:基于用户的协同过滤技术和基于项目的协同过滤技术. 该推荐算法的以上情形中均包含两步: 1. 找到数据库中有多少用户/项目

【Spark Summit East 2017】使用机器学习注释器和大规模深度学习本体进行语义自然语言理解

本讲义出自David Talby在Spark Summit East 2017上的演讲,主要介绍了一个通过自由文本格式的病人记录给出临床诊断推理和实时的参考意见的端到端系统,该系统的架构是构建在Kafka与Spark Streaming之上的,该系统可以实时地对于数据进行获取和加工,并使用Spark & MLLib进行建模,并通过Elasticsearch使得用户可以低延迟地对于结果进行访问.

机器学习算法集锦

机器学习 机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论.统计学.逼近论.凸分析.算法复杂度理论等多门学科.专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能.严格的定义:机器学习是一门研究机器获取新知识和新技能,并识别现有知识的学问.这里所说的"机器",指的就是计算机,电子计算机,中子计算机.光子计算机或神经计算机等等. 机器学习概论 由上图所示:机器学习分为四大块: classific

机器学习和深度学习的最佳框架大比拼

在过去的一年里,咱们讨论了六个开源机器学习和/或深度学习框架:Caffe,Microsoft Cognitive Toolkit(又名CNTK 2),MXNet,Scikit-learn,Spark MLlib和TensorFlow.如果把网撒得大些,可能还会覆盖其他几个流行的框架,包括Theano(一个10年之久的Python深度学习和机器学习框架),Keras(一个Theano和TensorFlow深度学习的前端),DeepLearning4j(Java和Scala在Hadoop和Spark

互联网世界的“人工智能”——探秘“深度学习”的前世今生

最近一段时间里,Facebook.Google.Yahoo!.百度等各大公司都在尝试将深度学习(deep learning)算法运用到产品开发中,以期使产品更智能化,提升用户体验.在深度学习持续走红的当下,本文作者对这一概念做了梳理,并分享了他对深度学习的实用性及未来发展的看法. 本周一,加利福尼亚州的Lake Tahoe.Facebook CEO Mark Zuckerburg造访了神经信息处理系统(Neutral Information Processing Systems, 下文简称NIP

一文读懂机器学习、数据科学、人工智能、深度学习和统计学之间的区别

在这篇文章中,数据科学家与分析师 Vincent Granville 明晰了数据科学家所具有的不同角色,以及数据科学与机器学习.深度学习.人工智能.统计学.物联网.运筹学和应用数学等相关领域的比较和重叠.Granville 介绍说,由于数据科学是一个范围很广的学科,所以他首先介绍了在业务环境中可能会遇到的数据科学家的类型,你甚至可能会发现你自己原来也是某种数据科学家.和其它任何科学学科一样,数据科学也可能会从其它相关学科借用技术.当然,我们也已经开发出了自己的技术库,尤其是让我们可以以自动化的方