基于Hadoop平台下的Canopy-Kmeans高效算法
赵庆
介绍了Hadoop平台下MapReduce的编程模型;分析了传统聚类Kmeans和Canopy算法的优缺点,并提出了基于Canopy的改进Kmeans算法。针对Canopy-Kmeans算法中Canopy选取的随机性问题,采用“最小最大原则”对该算法进行改进,避免了Cannopy选取的盲目性。采用MapReduce并行编程方法,以海量新闻信息聚类作为应用背景。实验结果表明,此方法相对于传统Kmeans和Canopy算法有着更高的准确率和稳定性。
基于Hadoop平台下的Canopy-Kmeans高效算法
时间: 2024-10-24 20:34:17