[家里蹲大学数学杂志]第393期中山大学2015年计算数学综合考试考博试题回忆版

试题有 6 个大题, 选作 4 题即可, 下面回忆的是其中的 4 题.

 

1. ($25'$) (1). 试证: $$\bex x,y>0,\ x\neq y\ra (x+y)\ln \frac{x+y}{2}<x\ln x+y\ln y. \eex$$ (2). 试证: $$\bex 0<e-\sex{1+\frac{1}{n}}^n<\frac{3}{n},\quad n=1,2,\cdots. \eex$$ (3). 试证曲面 $\sqrt{x}+\sqrt{y}+\sqrt{z}=\sqrt{a}\ (a>0)$ 上任一点的切平面在坐标轴上的截距之和为常数.

 

2. ($25'$) (1). 设 $\al_1,\cdots,\al_m\in\bbR^n\ (m\leq n)$. 试证: $\sed{\al_1,\cdots,\al_m}$ 线性无关等价于$$\bex \sed{\al_1,\al_1+\al_2,\cdots,\al_1+\al_2+\cdots+\al_m} \eex$$ 线性无关. (2). 设 $A$ 为 $n$ 阶可逆方阵, $\al,\beta$ 均为 $n$ 维列向量, 试证: $$\bex |A+\al\beta^T|=|A|(1+\beta^TA^{-1}\al). \eex$$

 

3. ($25'$) 设 $A$ 为 $n$ 阶正定矩阵, $\omega>0$, $b$ 为常数, 试证迭代格式 (大概如此) $$\bex x^{(k+1)}=x^{(k)}-\omega \sex{A\cdot \frac{x^{(k+1)}-x^{(k)}}{2}-b} \eex$$ 对 $\forall\ x^{(0)}$ 在解方程 $Ax=b$ 是均收敛.

 

4. ($25'$) 设 $$\bex f(x)=\sedd{\ba{ll} 1+x,&-1\leq x<0,\\ 1-x,&0\leq x<1,\\ 0,&|x|>1. \ea} \eex$$ (1). 试求 $\hat f(\xi)$, 其中 $$\bex \hat f(\xi)=\int_{\bbR} f(x)e^{-ix\xi}\rd x. \eex$$ (2). 设 $$\bex f(x)=\sum_n c(n)e^{-inx}, \eex$$ 试求 $c(n)$. (3). 设 $$\bex H(\xi)=\frac{1}{2}\sum_n c(n) e^{-in\xi}, \eex$$ 试证: $$\bex H(\xi)+H(\xi+\pi)=1. \eex$$ 

时间: 2024-09-17 18:08:33

[家里蹲大学数学杂志]第393期中山大学2015年计算数学综合考试考博试题回忆版的相关文章

[家里蹲大学数学杂志]第395期中科院2015年高校招生考试试题

    1. 求级数 $$\bex \vsm{n}\frac{(-1)^{n-1}}{(2n-1)(2n+1)} \eex$$ 的和.   解答: 考虑级数 $$\beex \bea \vsm{n}(-1)^n \frac{x^{2n-1}}{(2n-1)(2n+1)} &=\vsm{n}\frac{(-1)^n}{2n+1}\int_0^x t^{2n-2}\rd t\\ &=\int_0^x \vsm{n}\frac{(-1)^n}{2n+1}t^{2n-2}\rd t\\ &

[家里蹲大学数学杂志]第392期中山大学2015年泛函分析考博试题回忆版

1. ($12'$) 求 $L^p(\bbR)$, $1\leq p<\infty$; $C[0,1]$; $C_0(\bbR)$ 的共轭空间, 其中 $C_0(\bbR)$ 表示在无穷远处的极限为 $0$ 的函数, 且对 $f\in C_0(\bbR)$, $$\bex \sen{f}=\max_{x\in\bbR} |f(x)|. \eex$$ 并说明 $L^p(\bbR)$, $C[0,1]$, $C_0(\bbR)$ 哪些是可分的, 哪些是自反的? (不用证明)   2. ($13'$)

[家里蹲大学数学杂志]第418期南开大学2013年实变函数期末考试试题参考解答

    1. 设 $A$ 为非可数的实数集合. 证明: 存在整数 $n$ 使得 $A\cap [n,n+1]$ 为可数集. ($15'$)   证明: 用反证法. 若 $$\bex A\cap [n,n+1]\mbox{ 可数,}\quad \forall\ n\in\bbZ. \eex$$ 则 $A\cap [n,n+1)$ 也可数. 据 $$\bex A=\cup_{n=-\infty}^\infty (A\cap [n,n+1)) \eex$$ 即知 $A$ 可数, 这是一个矛盾. 故有结

[家里蹲大学数学杂志]第041期中山大学数计学院 2008 级数学与应用数学专业《泛函分析》期末考试试题 A

1 ( 10 分 ) 设 $\mathcal{X}$ 是 Banach 空间, $f$ 是 $\mathcal{X}$ 上的线性泛函. 求证: $f\in \mathcal{L}(\mathcal{X})$ 的充分必要条件是 \[ N(f)=\{ x\in \mathcal{X};\ f(x)=0 \} \] 是 $\mathcal{X}$ 的闭线性子空间. 证明: 必要性. 设 $N(f)\ni x_n\to x$, 则 $$\bex f(x)&=&\lim_{n\to\infty}f(

[家里蹲大学数学杂志]第034期中山大学2008年数学分析考研试题参考解答

1  (每小题6分,共48分)  (1) 求$\lim\limits_{x \to 0+}x^x;$ 解答:  $$\begin{eqnarray*}\textrm{ 原式} & = & \lim\limits_{x \to 0+}e^{x\ln x} = \lim\limits_{x \to 0+}e^{\cfrac{\ln x}{1/x}} = e^{\lim\limits_{x \to 0+}\cfrac{\ln x}{1/x}}\stackrel{L'Hospital}{=} e^

[家里蹲大学数学杂志]第037期泛函分析期末试题

1 (10 分) 设 $\mathcal{X}$ 是 Banach 空间, $f$ 是 $\mathcal{X}$ 上的线性泛函. 求证: $f\in \mathcal{L}(\mathcal{X})$ 的充分必要条件是 \[ N(f)=\{ x\in \mathcal{X};\ f(x)=0 \} \] 是 $\mathcal{X}$ 的闭线性子空间. 证明:  参见书 P 82 T 2.1.7(3).   2 (10 分) 设 $\mathcal{H}$ 是 Hilbert 空间, $l$

[家里蹲大学数学杂志]第390期中国科学院大学2014-2015-1微积分期末考试试题参考解答

    1. ($5'$) 利用 $\ve-N$ 语言证明 $$\bex \vlm{n}\frac{2015\cdot 2^n+20\sin n}{n!}=0. \eex$$   证明: 对 $\forall\ \ve>0$, 取 $$\bex N=\sez{\frac{4050}{\ve}}+1, \eex$$ 则当 $n\geq N$ 时, $$\bex \sev{\frac{2015\cdot 2^n+20\sin n}{n!}} \leq \frac{2015\cdot 2\cdots

[家里蹲大学数学杂志]第033期稳态可压Navier-Stokes方程弱解的存在性

 1. 方程  考虑 $\bbR^3$ 中有界区域 $\Omega$ 上如下的稳态流动: $$\bee\label{eq} \left\{\ba{ll} \Div(\varrho\bbu)=0,\\ \Div(\varrho\bbu\otimes \bbu) -\mu\lap \bbu -(\lambda+\mu)\n\Div\bbu +\n \varrho^\gamma =\varrho\bbf+\bbg. \ea\right. \eee$$      2. 假设  先作一些初步的假设:   

[家里蹲大学数学杂志]第264期武汉大学2013年数学分析考研试题参考解答

因为还是有人到处传来传去,所以收回了, 要见请看: 家里蹲大学数学杂志目录