python 回溯法 记录

一直不是太理解回溯法,这几天集中学习了一下,记录如下。

回溯法有“通用的解题法”之称。

1.定义: 

  • 也叫试探法,它是一种系统地搜索问题的解的方法。

2.基本思想: 

  • 从一条路往前走,能进则进,不能进则退回来,换一条路再试。

3.一般步骤:  

  • 定义一个解空间(子集树、排列树二选一)
  • 利用适于搜索的方法组织解空间。  
  • 利用深度优先法搜索解空间。  
  • 利用剪枝函数避免移动到不可能产生解的子空间。

4.约束函数:

  • 是否满足显约束(存在)

5.限界函数:

  • 是否满足隐约束(最优)

6.子集树模板

遍历子集树,时间复杂度 O(2^n)

如果解的长度是不固定的,那么解和元素顺序无关,即可以从中选择0个或多个。例如:子集,迷宫,...

如果解的长度是固定的,那么解和元素顺序有关,即每个元素有一个对应的状态。例如:子集,8皇后,...

解空间的个数指数级别的,为2^n,可以用子集树来表示所有的解

适用于:幂集、子集和、0-1背包、装载、8皇后、迷宫、...

a.子集树模板递归版


'''求集合{1, 2, 3, 4}的所有子集'''

n = 4
#a = ['a','b','c','d']
a = [1, 2, 3, 4]
x = []   # 一个解(n元0-1数组)
X = []   # 一组解

# 冲突检测:无
def conflict(k):
    global n, x, X, a

    return False # 无冲突

# 一个例子
# 冲突检测:奇偶性相同,且和小于8的子集
def conflict2(k):
    global n, x, X, a

    if k==0:
        return False

    # 根据部分解,构造部分集
    s = [y[0] for y in filter(lambda s:s[1]!=0, zip(a[:k+1],x[:k+1]))]
    if len(s)==0:
        return False
    if 0 < sum(map(lambda y:y%2, s)) < len(s) or sum(s) >= 8: # 只比较 x[k] 与 x[k-1] 奇偶是否相间
        return True

    return False # 无冲突

# 子集树递归模板
def subsets(k): # 到达第k个元素
    global n, x, X

    if k >= n:  # 超出最尾的元素
        #print(x)
        X.append(x[:]) # 保存(一个解)
    else:
        for i in [1, 0]: # 遍历元素 a[k] 的两种选择状态:1-选择,0-不选
            x.append(i)
            if not conflict2(k): # 剪枝
                subsets(k+1)
            x.pop()              # 回溯

# 根据一个解x,构造一个子集
def get_a_subset(x):
    global a

    return [y[0] for y in filter(lambda s:s[1]!=0, zip(a,x))]

# 根据一组解X, 构造一组子集
def get_all_subset(X):
    return [get_a_subset(x) for x in X]

# 测试
subsets(0)

# 查看第3个解,及对应的子集
#print(X[2])
#print(get_a_subset(X[2]))

print(get_all_subset(X))
b.子集树模板非递归版

7.排列树模板

遍历排列树,时间复杂度O(n!)

解空间是由n个元素的排列形成,也就是说n个元素的每一个排列都是解空间中的一个元素,那么,最后解空间的组织形式是排列树

适用于:n个元素全排列、旅行商、...

a.排列树模板递归版


'''求[1,2,3,4]的全排列'''

n = 4
x = [1,2,3,4] # 一个解
X = []        # 一组解

# 冲突检测:无
def conflict(k):
    global n, x, X

    return False # 无冲突

# 一个例子
# 冲突检测:元素奇偶相间的排列
def conflict2(k):
    global n, x, X

    if k==0:                   # 第一个元素,肯定无冲突
        return False

    if x[k-1] % 2 == x[k] % 2: # 只比较 x[k] 与 x[k-1] 奇偶是否相同
        return True

    return False # 无冲突

# 排列树递归模板
def backkrak(k): # 到达第k个位置
    global n, x, X

    if k >= n:  # 超出最尾的位置
        print(x)
        #X.append(x[:]) # 注意x[:]
    else:
        for i in range(k, n): # 遍历后面第 k~n-1 的位置
            x[k], x[i] = x[i], x[k]
            if not conflict2(k):    # 剪枝
                backkrak(k+1)
            x[i], x[k] = x[k], x[i] # 回溯

# 测试
backkrak(0)
b.排列树模板非递归版

时间: 2024-10-06 22:11:59

python 回溯法 记录的相关文章

python回溯法实现数组全排列输出实例分析_python

本文实例讲述了python回溯法实现数组全排列输出的方法.分享给大家供大家参考.具体分析如下: 全排列解释:从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排列起来,叫做从n个不同元素中取出m个元素的一个排列.当m=n时所有的排列情况叫全排列. from sys import stdout #code from http://www.jb51.net/ def perm(li, start, end): if(start == end): for elem in li: stdout.wr

python 回溯法 子集树模板 系列 —— 10、m着色问题

问题 图的m-着色判定问题 给定无向连通图G和m种不同的颜色.用这些颜色为图G的各顶点着色,每个顶点着一种颜色,是否有一种着色法使G中任意相邻的2个顶点着不同颜色? 图的m-着色优化问题 若一个图最少需要m种颜色才能使图中任意相邻的2个顶点着不同颜色,则称这个数m为该图的色数.求一个图的最小色数m的问题称为m-着色优化问题. 分析 解的长度是固定的,n.若x为本问题的一个解,则x[i]表示第i个节点的涂色编号. 可以将m种颜色看作每个节点的状态空间.每到一个节点,遍历所有颜色,剪枝,回溯. 不难

python 回溯法 子集树模板 系列 —— 3、0-1背包问题

问题 给定N个物品和一个背包.物品i的重量是Wi,其价值位Vi ,背包的容量为C.问应该如何选择装入背包的物品,使得放入背包的物品的总价值为最大? 分析 显然,放入背包的物品,是N个物品的所有子集的其中之一.N个物品中每一个物品,都有选择.不选择两种状态.因此,只需要对每一个物品的这两种状态进行遍历. 解是一个长度固定的N元0,1数组. 套用回溯法子集树模板,做起来不要太爽!!! 代码 '''0-1背包问题''' n = 3 # 物品数量 c = 30 # 包的载重量 w = [20, 15,

python 回溯法 子集树模板 系列 —— 8、图的遍历

问题 一个图: A --> B A --> C B --> C B --> D B --> E C --> A C --> D D --> C E --> F F --> C F --> D 从图中的一个节点E出发,不重复地经过所有其它节点后,回到出发节点E,称为一条路径.请找出所有可能的路径. 分析 将这个图可视化如下: 本问题涉及到图,那首先要考虑图用那种存储结构表示.邻接矩阵.邻接表....都不太熟. 百度一下,在这里发现了一个最爱.

python 回溯法 子集树模板 系列 —— 9、旅行商问题(TSP)

问题 旅行商问题(Traveling Salesman Problem,TSP)是旅行商要到若干个城市旅行,各城市之间的费用是已知的,为了节省费用,旅行商决定从所在城市出发,到每个城市旅行一次后返回初始城市,问他应选择什么样的路线才能使所走的总费用最短? 分析 此问题可描述如下:G=(V,E)是带权的有向图,找到包含V中每个结点一个有向环,亦即一条周游路线,使得这个有向环上所有边成本之和最小. 这个问题与前一篇文章的区别就是,本题是带权的图.只要一点小小的修改即可. 解的长度是固定的n+1. 对

python 回溯法 子集树模板 系列 —— 18、马踏棋盘

问题 将马放到国际象棋的8*8棋盘board上的某个方格中,马按走棋规则进行移动,走遍棋盘上的64个方格,要求每个方格进入且只进入一次,找出一种可行的方案. 分析 说明:这个图是5*5的棋盘. 图片来源:这里 类似于迷宫问题,只不过此问题的解长度固定为64 每到一格,就有[(-2,1),(-1,2),(1,2),(2,1),(2,-1),(1,-2),(-1,-2),(-2,-1)]顺时针8个方向可以选择. 走到一格称为走了一步,把每一步看作元素,8个方向看作这一步的状态空间. 套用回溯法子集树

python 回溯法 子集树模板 系列 —— 16、爬楼梯

问题 某楼梯有n层台阶,每步只能走1级台阶,或2级台阶.从下向上爬楼梯,有多少种爬法? 分析 这个问题之前用分治法解决过.但是,这里我要用回溯法子集树模板解决它. 祭出元素-状态空间分析大法:每一步是一个元素,可走的步数[1,2]就是其状态空间.不难看出,元素不固定,状态空间固定. 直接上代码. 代码 '''爬楼梯''' n = 7 # 楼梯阶数 x = [] # 一个解(长度不固定,1-2数组,表示该步走的台阶数) X = [] # 一组解 # 冲突检测 def conflict(k): gl

python 回溯法 子集树模板 系列 —— 14、最长公共子序列(LCS)

问题 输入 第1行:字符串A 第2行:字符串B (A,B的长度 <= 1000) 输出 输出最长的子序列,如果有多个,随意输出1个. 输入示例 belong cnblogs 输出示例 blog 分析 既然打算套用回溯法子集树模板,那就要祭出元素-状态空间分析大法. 以长度较小的字符串中的字符作为元素,以长度较大的字符串中的字符作为状态空间,对每一个元素,遍历它的状态空间,其它的事情交给剪枝函数!!! 解x的长度不固定,xi表示字符串b中的序号. 在处理每一个元素时,如果没有一个状态被选择(cnb

python 回溯法 子集树模板 系列 —— 13、最佳作业调度问题

问题 给定 n 个作业,每一个作业都有两项子任务需要分别在两台机器上完成.每一个作业必须先由机器1 处理,然后由机器2处理. 试设计一个算法找出完成这n个任务的最佳调度,使其机器2完成各作业时间之和达到最小. 分析: 看一个具体的例子: tji 机器1 机器2 作业1 2 1 作业2 3 1 作业3 2 3 最优调度顺序:1 3 2 处理时间:18 这3个作业的6种可能的调度方案是1,2,3:1,3,2:2,1,3:2,3,1:3,1,2:3,2,1: 它们所相应的完成时间和分别是19,18,2