认识数据湖——拥抱开源大数据技术的前提

世界对数据湖的兴趣依然在不断增长,但如果说对数据湖的宣传都是烟雾弹的话,这就贬低了数据湖真正的能力。“数据仓库”和“大数据”等概念都逐渐深入人心,但“数据湖”仍然是让IT和业务相关者头疼的一件事情。

随着人们对于数据湖的清晰定义、使用案例、最佳实践等信息的需求不断增长,IT专业人士需要一则明确的数据湖指南,回答以下问题:数据湖是什么?我们应该如何利用它?数据湖又将如何改变大数据呢?

1.定义及观点

数据湖成为了核心数据架构中发展得很快的一环,但IT专业人士常有疑惑,数据湖究竟是一个架构策略还是架构的目标呢?实际上并没有清晰的界限,但仍然有方法来解决定义的问题。数据湖是一个中央储存库,为多种数据工作负载储存企业数据;通过数据湖,终端架构可以得到解决,同时数据结构相关的决策也是建立数据湖时的关键。 数据湖被越来越多的采用,而它的实施分为四个关键的阶段:

  • 技术评估。通过进行大数据实验项目,关注几个特定的业务目标和成果,数据湖的使用者可以对这项技术进行测试,并熟悉Apache Hadoop环境的管理。
  • 做出反应。在这个阶段,各公司开始利用Hadoop来解决现有架构的低效率问题,确立清晰可测的业务机会。此外,这个采纳过程对于IT效率的提高也是非常关键的。
  • 主动利用。通过为分析项目合并数据以及利用Hadoop获得经济的可拓展性这两种手段,各公司可以在一个单一的中央存储中管理大量新出现的数据源,例如物联网、社交媒体和非结构化的数据。
  • 建立核心竞争力。随着大数据成为IT战略的核心组成部分,各公司最终能够达到发展的高峰,消除所有业务应用和分析应用之间的隔阂,重新建立一个单一的企业平台。

2.数据湖的组织

得益于Hadoop的灵活性和可拓展性,我们今天能够保存、分类、探索并利用的数据类型比以往任何时候都要多。但避免数据湖成为数据沼泽的关键在于数据治理,数据的组织和安全性也是决定数据探索成败的关键。一个清晰而有条理的数据组织(通常是按类目或者按数据用法划分)能够帮助Hadoop工程师建立更加完善的技术决策,帮助分析师和数据科学家从数据中获取真正的洞察。

3.统一数据探索、数据科学和商务智能

对于企业BI需求、数据探索和数据科学的支持是推动数据湖部署的主要因素,这三项技术能将原始数据用于机器学习算法和统计功能。因为敏捷方法学为企业级 BI提供了自适应途径,数据湖就能够落实更多具体的企业业务、性能指标和度量权值,同时可用于储存历史数据。 充满竞争的商业环境让人目不暇接,各公司必须认识到探索技术的关键作用,并认识到解答未知的重要性。这刺激了我们的需要,要把数据直接用于分析技术,产生意义重大的洞察、为企业创造附加价值。

4.成功的关键

要帮助企业从他们的数据湖中实现最大化效益,就必须要考虑以下几个要素:

  • 从长远角度考虑数据。在开始一个数据项目时,必须仔细考虑数据在今后其他应用中的可重用性。要明白未来新产生的数据需求往往是不可预知的,了解这一点后公司就可以更好地相应准备并利用起他们的数据。
  • 先确立数据治理结构。数据治理被应用在了整个企业的数据和信息政策当中,所以在考虑数据湖时也不应该例外。数据治理规范了企业中的每个人对数据湖的使用,并最小化了发生错误和不当数据管理的可能性。
  • 预先解决安全问题。以数据为中心的安全保护提供了从整个数据的生命周期来看数据的宏大视角,此处的关键要素就是从第一天开始就正视安全问题,确立好哪些数据可以引入数据湖,并为数据湖中的各类数据制定使用权限。

尽管数据湖在大数据领域还是一个比较新的词汇,但它已经成为了企业级IT架构和整体数据战略的重要部分。数据湖战略拥有合理的架构,能够和数据科学以及成本低廉、拥有商业基础的机器学习分析完美结合。对于数据湖核心概念的了解能够帮助企业更好地利用并保护自己的数据,同时提高通过数据进行探索的能力。

本文作者:John O’Brien

来源:51CTO

时间: 2024-09-20 07:02:49

认识数据湖——拥抱开源大数据技术的前提的相关文章

新联邦业务数据湖为颠覆大数据应用铺路

文章讲的是新联邦业务数据湖为颠覆大数据应用铺路,EMC公司今天发布联邦业务数据湖.这套完整的工程解决方案包括来自EMC信息基础设施.Pivotal和VMware的领先的存储及大数据分析技术,帮助客户利用大数据的新世界,从而扫清通向新洞察和颠覆性差异化道路的障碍. 方案可在短至七天内实施,联邦业务数据湖可极大简化构建一个数据湖所需的大量复杂任务,是专为企业需要的速度.自服务和可扩展性而设计,让组织能够通过使用大数据分析,开始更好地进行业务决策.作为一个来自EMC联邦的融合解决方案, 联邦业务数据湖

数据湖恶化成了数据沼泽?你一定没有注意这3点

多年来,在Apache Hadoop等技术的支持下,组织一直在寻求构建数据湖--企业范围的数据管理平台,允许以原生格式存储所有数据.数据湖可通过提供给一个单一的数据存储库来打破信息孤岛问题,整个组织都可以使用从业务分析到数据挖掘的所有东西.原始和不受约束,数据湖被认为是一个包罗万象的大数据. 但是,商业智能(BI)软件专家,金字塔分析公司的首席技术官Avi Perez说,他看到许多客户的数据湖正在恶化为数据沼泽--完全无法接近终端用户的大量数据存储库. "数据库真的很贵."Perez说

盘点九大热门开源大数据处理技术

随着全球企业和个人数据的爆炸式增长,数据本身正在取代软件和硬件成为驱动信息技术行业和全球经济的下一个大"油田". 与PC.web等断层式信息技术革命相比,大数据的最大的不同是,这是一场由"开源软件"驱动的革命.从IBM.Oracle等巨头到雨后春笋般的大数据创业公司,开源软件与大数据的结合迸发出惊人的产业颠覆性力量,甚至VMware这样的过去完全依赖专有软件的厂商都开始拥抱开源大数据工具. 下面,我们就列举九大最热门的大数据开源技术供大家参考. 一.Hadoop A

开源大数据技术专场(上午):Spark、HBase、JStorm应用与实践

16日上午9点,2016云栖大会"开源大数据技术专场" (全天)在阿里云技术专家封神的主持下开启.通过封神了解到,在上午的专场中,阿里云高级技术专家无谓.阿里云技术专家封神.阿里巴巴中间件技术部高级技术专家天梧.阿里巴巴中间件技术部资深技术专家纪君祥将给大家带来Hadoop.Spark.HBase.JStorm Turbo等内容. 无谓:Hadoop过去现在未来,从阿里云梯到E-MapReduce 阿里云高级技术专家 无谓  从开辟大数据先河至现在,风雨十年,Hadoop已成为企业的通

开源大数据技术专场(下午):Databricks、Intel、阿里、梨视频的技术实践

开源大数据技术专场下午场在阿里技术专家封神的主持下开始,参与分享的嘉宾有Spark Commiter.来自Databriks的范文臣,HDFS committer.Intel 研发经理郑锴,逸晗网络科技大数据平台负责人杨智,Intel技术专家毛玮,以及阿里云技术专家木艮. Databricks范文臣:Deep Dive Into Catalyst--Apache Spark 2.0's Optimizer 在本次演讲中范文臣首先重点介绍了Catalyst.在Spark中,DataSet以及Dat

盘点九种引人瞩目的开源大数据技术

本文讲的是盘点九种引人瞩目的开源大数据技术,越来越多的公司开始聚焦于大数据技术领域,而开源恰恰是大数据技术的灵魂.以下将为您介绍九大引人注目的开源大数据技术,请拭目以待: 1.Apache Hadoop Apache hadoop是一个开源的分布式计算框架,最初由Doug为支持其开源Web搜索引擎Nutch所创立.通过集成MapReduce技术,Hadoop将大数据分布到多个数据节点上进行处理.Hadoop遵循Apache 2.0许可证,可以轻松处理结构化.半结构化和非结构化数据,一举成为现在非

时下最热开源大数据技术TOP10

文章讲的是时下最热开源大数据技术TOP10,眼下大数据成为最热技术,并且呈现爆炸式增长.全世界的新项目雨后春笋般的出现.对于这些新的公司.项目来说,利好就是所有可用的技术是开放源代码的,直接采用. 海外开发者Tim做了一个整理,小编最快速为大家呈现.(ps:不足之处,请来信指正,我的微信就在文章最下方)以下是十大热门开源的大数据技术: 1.Hadoop 特点高可用,能够为你的数据存储项目提供所需的YARN.HDFS和基础架构,并运行关键的大数据服务和应用程序. 2.Spark 易使用.支持所有重

开源大数据平台实施和使用中的难点

开源大数据技术是一种新一代技术和构架,它以成本较低.以快速的采集.处理和分析技术,从各种超大规模的数据中提取价值.大数据技术不断涌现和发展,让我们处理海量数据更加容易.更加便宜和迅速,成为分析和挖掘海量数据价值的一个利器,甚至可以改变许多行业的商业模式. 庞大的开源大数据技术体系,使得大数据平台在实施和使用的过程中遇到很多难点,Think Big团队总结了在开源大数据平台设施的整个过程及花费的时间,如下图所示: 大数据平台的优化和运维 大数据平台的优化和运维应该是开源大数据平台实施的难点.也是构

开源大数据平台实施的难点

开源大数据技术是一种新一代技术和构架,它以成本较低.以快速的采集.处理和分析技术,从各种超大规模的数据中提取价值.大数据技术不断涌现和发展,让我们处理海量数据更加容易.更加便宜和迅速,成为分析和挖掘海量数据价值的一个利器,甚至可以改变许多行业的商业模式. 庞大的开源大数据技术体系,使得大数据平台在实施和使用的过程中遇到很多难点,Think Big团队总结了在开源大数据平台设施的整个过程及花费的时间,如下图所示: 1大数据平台的优化和运维 大数据平台的优化和运维应该是开源大数据平台实施的难点.也是