C#实现基于ffmpeg加虹软的人脸识别

原文:C#实现基于ffmpeg加虹软的人脸识别

关于人脸识别

目前的人脸识别已经相对成熟,有各种收费免费的商业方案和开源方案,其中OpenCV很早就支持了人脸识别,在我选择人脸识别开发库时,也横向对比了三种库,包括在线识别的百度、开源的OpenCV和商业库虹软(中小型规模免费)。

百度的人脸识别,才上线不久,文档不太完善,之前联系百度,官方也给了我基于Android的Example,但是不太符合我的需求,一是照片需要上传至百度服务器(这个是最大的问题),其次,人脸的定位需要自行去实现(捕获到人脸后上传进行识别)。

OpenCV很早以前就用过,当时做人脸+车牌识别时,最先考虑的就是OpenCV,但是识别率在当时不算很高,后来是采用了一个电子科大的老师自行开发的识别库(相对易用,识别率也还不错),所以这次准备做时,没有选择OpenCV。

虹软其实在无意间发现的,当时正在寻找开发库,正在测试Python的一个方案,就发现有新闻说虹软的识别库全面开放并且可以免费使用,而且是离线识别,所以就下载尝试了一下,发现识别率还不错,所以就暂定了采用虹软的识别方案。这里主要就给大家分享一下开发过程当中的一些坑和使用心得,顺便开源识别库的C# Wrapper。

SDK的C# Wrapper

由于虹软的库是采用C++开发的,而我的应用程序采用的是C#,所以,需要对库进行包装,便于C#的调用,包装的主要需求是可以在C#中快速方便的调用,无需考虑内存、指针等问题,并且具备一定的容错性。Wrapper库目前已经开源,大家可以到Github上进行下载,地址点击这里。Wrapper库基本上没有什么可以说的,无非是对PInvoke的包装,只是里面做了比较多的细节处理,屏蔽了调用细节,提供了相对高层的函数。有兴趣的可以看看源代码。

Wrapper库的使用例子

基本使用

人脸检测(静态图片):

using (var detection = LocatorFactory.GetDetectionLocator("appId", "sdkKey"))
{
    var image = Image.FromFile("test.jpg");
    var bitmap = new Bitmap(image);

    var result = detection.Detect(bitmap, out var locateResult);
    //检测到位置信息在使用完毕后,需要释放资源,避免内存泄露
    using (locateResult)
    {
        if (result == ErrorCode.Ok && locateResult.FaceCount > 0)
        {
            using (var g = Graphics.FromImage(bitmap))
            {
                var face = locateResult.Faces[0].ToRectangle();
                g.DrawRectangle(new Pen(Color.Chartreuse), face.X, face.Y, face.Width, face.Height);
            }

            bitmap.Save("output.jpg", ImageFormat.Jpeg);
        }
    }
}

人脸跟踪(人脸跟踪一般用于视频的连续帧识别,相较于检测,又更高的执行效率,这里用静态图片做例子,实际使用和检测没啥区别):

using (var detection = LocatorFactory.GetTrackingLocator("appId", "sdkKey"))
{
    var image = Image.FromFile("test.jpg");
    var bitmap = new Bitmap(image);

    var result = detection.Detect(bitmap, out var locateResult);
    using (locateResult)
    {
        if (result == ErrorCode.Ok && locateResult.FaceCount > 0)
        {
            using (var g = Graphics.FromImage(bitmap))
            {
                var face = locateResult.Faces[0].ToRectangle();
                g.DrawRectangle(new Pen(Color.Chartreuse), face.X, face.Y, face.Width, face.Height);
            }

            bitmap.Save("output.jpg", ImageFormat.Jpeg);
        }
    }
}

人脸对比:

using (var proccesor = new FaceProcessor("appid",
                "locatorKey", "recognizeKey", true))
{
    var image1 = Image.FromFile("test2.jpg");
    var image2 = Image.FromFile("test.jpg");

    var result1 = proccesor.LocateExtract(new Bitmap(image1));
    var result2 = proccesor.LocateExtract(new Bitmap(image2));

    //FaceProcessor是个整合包装类,集成了检测和识别,如果要单独使用识别,可以使用FaceRecognize类
    //这里做演示,假设图片都只有一张脸
    //可以将FeatureData持久化保存,这个即是人脸特征数据,用于后续的人脸匹配
    //File.WriteAllBytes("XXX.data", feature.FeatureData);FeatureData会自动转型为byte数组

    if ((result1 != null) & (result2 != null))
        Console.WriteLine(proccesor.Match(result1[0].FeatureData, result2[0].FeatureData, true));
}

使用注意事项

LocateResult(检测结果)和Feature(人脸特征)都包含需要释放的内存资源,在使用完毕后,记得需要释放,否则会引起内存泄露。FaceProcessorFaceRecognizeMatch函数,在完成比较后,可以自动释放,只需要最后两个参数指定为true即可,如果是用于人脸匹配(1:N),则可以采用默认参数,这种情况下,第一个参数指定的特征数据不会自动释放,用于循环和特征库的特征进行比对。

整合的完整例子

在Github上,有完整的FaceDemo例子,里面主要实现了通过ffmpeg采集RTSP协议的图像(使用海康的摄像机),然后进行人脸匹配。在开发过程中遇到不少的坑。

人脸识别的首要工作就是捕获摄像机视频帧,这一块上是坑的最久的,因为最开始采用的是OpenCV的包装库,Emgu.CV,在开发过程中,捕获USB摄像头时,倒是问题不大,没有出现过异常。在捕获RTSP视频流时,会不定时的出现AccessviolationException异常,短则几十分钟,长则几个小时,总之就是不稳定。在官方Github地址上,也提了Issue,他们给出的答复是屏蔽的我业务逻辑,仅捕获视频流试试,结果问题依然,所以,我基本坑定了试Emgu.CV上面的问题。后来经过反复的实验,最终确定了选择ffmpeg。

ffmepg主要采用ProcessStartInfo进行调用,我采用的是NReco.VideoConverter(一个ffmpeg调用的包装,可以通过nuget搜索安装),虽然ffmpeg解决了稳定性问题,但是实际开发时,也遇到了不少坑,其中,最主要的是NReco.VideoConverter没有任何文档和例子(实际有,需要75刀购买),所以,自己研究了半天,如何捕获视频流并转换为Bitmap对象。只要实现这一步,后续就是调用Wrapper就行了。

FaceDemo详解

上面说到了,通过ffmpeg捕获视频流并转换Bitmap是重点,所以,这里也主要介绍这一块。

首先是ffmpeg的调用参数:

var setting =
new ConvertSettings
{
    CustomOutputArgs = "-an -r 15 -pix_fmt bgr24 -updatefirst 1"
}; //-s 1920x1080 -q:v 2 -b:v 64k

task = ffmpeg.ConvertLiveMedia("rtsp://admin:12qwaszxA@192.168.1.64:554/h264/ch1/main/av_stream", null,
outputStream, Format.raw_video, setting);
task.OutputDataReceived += DataReceived;
task.Start();

-an表示不捕获音频流,-r表示帧率,根据需求和实际设备调整此参数,-pix_fmt比较重要,一般情况下,指定为bgr24不会有太大问题(还是看具体设备),之前就是用成了rgb24,结果捕获出来的图像,人都变成阿凡达了,颜色是反的。最后一个参数,坑的我差点放弃这个方案。本身,ffmpeg在调用时,需要指定一个文件名模板,捕获到的输出会按照模板生成文件,如果要将数据输出到控制台,则最后传入一个-即可,最开始没有指定updatefirst,ffmpeg在捕获了第一帧后就抛出了异常,最后查了半天ffmpeg说明(完整参数说明非常多,输出到文本有1319KB),发现了这个参数,表示持续更新第一个文件。最后,在调用视频捕获是,需要指定输出格式,必须指定为Format.raw_video,实际上这个格式名称有些误导人,按道理将应该叫做raw_image,因为最终输出的是每帧原始的位图数据。

到此为止,还并没有解决视频流数据的捕获,因为又来一个坑,ProcessStartInfo的控制台缓冲区大小只有32768 bytes,即,每一次的输出,实际上并不是一个完整的位图数据。

//完整代码参加Github源代码
//代码片段1
private Bitmap _image;
private IntPtr _pImage;

{
    _pImage = Marshal.AllocHGlobal(1920 * 1080 * 3);
    _image = new Bitmap(1920, 1080, 1920 * 3, PixelFormat.Format24bppRgb, _pImage);
}

//代码片段2
private MemoryStream outputStream;

private void DataReceived(object sender, EventArgs e)
{
    if (outputStream.Position == 6220800)
        lock (_imageLock)
        {
            var data = outputStream.ToArray();

            Marshal.Copy(data, 0, _pImage, data.Length);

            outputStream.Seek(0, SeekOrigin.Begin);
        }
}

花了不少时间摸索(不要看只有几行,人都整崩溃了),得出了上述代码。首先,我捕获的图像数据是24位的,并且图像大小是1080p的,所以,实际上,一个原始位图数据的大小为stride * height,即width * 3 * height,大小为6220800 bytes。所以,在判断了捕获数据到达这个大小后,就进行Bitmap转换处理,然后将MemoryStream的位置移动到最开始。需要注意的时,由于捕获到的是原始数据(不包含bmp的HeaderInfo),所以注意看Bitmap的构造方式,是通过一个指向原始数据位置的指针就行构造的,更新该图像时,也仅需要更新指针指向的位置数据即可,无需在建立新的Bitmap实例。

位图数据获取到了,就可以进行识别处理了,高高兴兴的加上了识别逻辑,但是现实总是充满了意外和惊喜,没错,坑又来了。没有加入识别逻辑的时候,捕获到的图像在PictureBox上显示非常正常,清晰、流畅,加上识别逻辑后,开始出现花屏(捕获到的图像花屏)、拖影、显示延迟(至少会延迟10-20秒以上)、程序卡顿,总之就是各种问题。最开始,我的识别逻辑写到DataReceived方法里面的,这个方法是运行于主线程外的另一个线程中的,其实按道理将,捕获、识别、显示位于一个线程中,应该是不会出现问题,我估计(不确定,没有去深入研究,如果谁知道实际原因,可以留言告诉我),是因为ffmpeg的原因,因为ffmpeg是单独的一个进程在跑,他的数据捕获是持续在进行的,而识别模块的处理时间大于每一帧的采集时间,所以,缓冲区中的数据没有得到及时处理,ffmpeg接收到的部分图像数据(大于32768的数据)被丢弃了,然后就出现了各种问题。最后,又是一次耗时不短的探索之旅。

private void Render()
{
    while (_renderRunning)
    {
        if (_image == null)
            continue;

        Bitmap image;

        lock (_imageLock)
        {
            image = (Bitmap) _image.Clone();
        }

        if (_shouldShot){
            WriteFeature(image);
            _shouldShot = false;
        }

        Verify(image);

        if (videoImage.InvokeRequired)
            videoImage.Invoke(new Action(() => { videoImage.Image = image; }));
        else
            videoImage.Image = image;
    }
}

如上代码所述,我单独开了一个线程,用于图像的识别处理和显示,每次都从已捕获到的图像中克隆出新的Bitmap实例进行处理。这种方式的缺点在于,有可能会导致丢帧的现象,因为上面说到了,识别时间(如果检测到新的人脸,那么加上匹配,大约需要130ms左右)大于每帧时间,但是并不影响识别效果和需求的实现,基本丢弃的帧可以忽律。最后,运行,稳定了、完美了,实际也感觉不到丢帧。

Demo程序,我运行了大约4天左右,中间没有出现过任何异常和识别错误。

写在最后

虽然虹软官方表示,免费识别库适用于1000人脸库以下的识别,实际上,做一定的工作(工作量其实也不小),也是可以实现较大规模的人脸搜索滴。例如,采用多线程进行匹配,如果人脸库人脸数量大于1000,则可以考虑每个线程分别进行处理,人脸特征数据做缓存(一个人脸的特征数据是22KB,对内存要求较高),以提升程序的识别搜索效率。或者人脸库特别大的情况下,可以采用分布式处理,人脸特征加载到Redis数据库当中,多个进程多个线程读取处理,每个线程上传自己的识别结果,然后主进程做结果合并判断工作,主要的挑战就在于多线程的工作分配一致性和对单点故障的容错性。

时间: 2024-12-31 21:53:27

C#实现基于ffmpeg加虹软的人脸识别的相关文章

基于OpenCV的PHP图像人脸识别技术_php技巧

openCV是一个开源的用C/C++开发的计算机图形图像库,非常强大,研究资料很齐全.本文重点是介绍如何使用php来调用其中的局部的功能.人脸侦查技术只是openCV一个应用分支. 1.安装 从源代码编译成一个动态的so文件. 1.1.安装 OpenCV (OpenCV 1.0.0) 下载地址:http://sourceforge.net/project/showfiles.php?group_id=22870&package_id=16948 #tar xvzf OpenCV-1.0.0.ta

求助:请问基于lda的人脸识别用matlab怎么做呢??希望有人可以教教

问题描述 求助:请问基于lda的人脸识别用matlab怎么做呢??希望有人可以教教 请问基于lda的人脸识别用matlab怎么做呢??希望有人可以教教 解决方案 http://www.cnki.com.cn/Article/CJFDTotal-JZDF201204042.htm 基于PCA和LDA的人脸识别系统设计 文献 希望可以帮助到你 解决方案二: http://wenku.baidu.com/view/6af06f1a10a6f524ccbf8519.html 这是百度文库中的一篇关于MA

人脸识别的社交未来

[核心提示] 人脸图片和视频正在给未来的社交网络提供无限想象空间,更多社交产品正在 利用人脸识别使影像信息和用户的社交网络个人资料连接起来,社交网络将会更加随心所欲,碟中谍4里的场景离我们不再遥远,这一切,将会是可感知和预见,你准备好了吗? 特工利用隐形眼镜,扫描乘客面孔搜索目标,最终从火车站截获了绝密文件,之后过关斩将来到了小巷被迎面而来的女杀手袭击身亡时,他眼中的人脸识别镜头拍下的女杀手面容输入手机,手中的 iPhone 已经解析好了对方的图片和信息.这是电影碟中谍4里的场景,当然,在你看完

百度人脸识别搜索是怎么实现的?

中介交易 SEO诊断 淘宝客 云主机 技术大厅 如果用户给出一张图片,百度识图会判断里面是否出现人脸,如果有,百度识图在相似图片搜索之外,同时会全网寻找出现过的类似人像. 如何通过一张图片,找到另一张图片? 对于搜索引擎而言,寻找图片之间的内在联系,与常见的关键词搜索并没有本质区别--都是通过关键特征的比对,按照一定的逻辑规则完成匹配.然而不同之处也是显而易见的,以图片为输入发起的搜索,存在多种搜索含义的可能. 比方,一张图片可能既包括风景又包括人,用户想要寻找的是类似风景.类似布局结构的图片还

百度人脸识别搜索是怎么实现的

中介交易 SEO诊断 淘宝客 云主机 技术大厅 如果用户给出一张图片,百度识图会判断里面是否出现人脸,如果有,百度识图在相似图片搜索之外,同时会全网寻找出现过的类似人像. 如何通过一张图片,找到另一张图片? 对于搜索引擎而言,寻找图片之间的内在联系,与常见的关键词搜索并没有本质区别--都是通过关键特征的比对,按照一定的逻辑规则完成匹配.然而不同之处也是显而易见的,以图片为输入发起的搜索,存在多种搜索含义的可能. 比方,一张图片可能既包括风景又包括人,用户想要寻找的是类似风景.类似布局结构的图片还

人脸识别ATM机来了:这技术真靠谱吗?

文章讲的是人脸识别ATM机来了:这技术真靠谱吗,昨天,科技圈被一台金融圈的机器给刷屏了,就是我们大家都用过的ATM机.这台ATM机的神奇之外就在于,让金融设备进入了刷脸时代,也就是说用户取钱光 有密码已经不行了,还得要"脸".这已经不仅是互联网的跨界,而是智能科技深入到了我们的各行各业,并正在对各行各业进行改造. 人脸识别技术发展的现状 人脸识别技术在生物识别技术领域,其实并不算什么新鲜事.关于人脸识别系统的始于20世纪60年代,之后伴随着计算机技术的发展而演变;上世纪90年代后期,以

《中国人工智能学会通讯》——11.14 三维人脸识别算法

11.14 三维人脸识别算法 三维人脸识别由于其类内差距大而类间差距小,且易受表情变化等非刚性形变影响等特点,一直是一个富有挑战的模式识别问题[5] .此外,三维人脸识别还易受头发遮挡,以及数据缺失等因素的影响.通过分析发现,虽然表情变化会改变人脸的三维形状,但人脸的局部形状信息依然能保持较好的稳定性.因此,采用局部特征匹配的方式可以有效地降低表情变化对人脸识别带来的负面影响.基于此,本文提出了一种基于 RoPS 局部特征的三维人脸识别算法[9] .该算法首先采用鼻尖检测获得人脸点云:接着对三维

基于 OpenCV 的人脸识别

##一点背景知识 OpenCV 是一个开源的计算机视觉和机器学习库.它包含成千上万优化过的算法,为各种计算机视觉应用提供了一个通用工具包.根据这个项目的关于页面,OpenCV 已被广泛运用在各种项目上,从谷歌街景的图片拼接,到交互艺术展览的技术实现中,都有 OpenCV 的身影. OpenCV 起始于 1999 年 Intel 的一个内部研究项目.从那时起,它的开发就一直很活跃.进化到现在,它已支持如 OpenCL 和 OpenGL 等现代技术,也支持如 iOS 和 Android 等平台. 1

《中国人工智能学会通讯》——11.51 基于幻象技术的异质人脸图像合成

11.51 基于幻象技术的异质人脸图像合成 基于稀疏特征选择的方法,以及现有的大部分算法在合成人脸图像时,多是采用线性组合的方式.线性组合,即线性加权平均,可以看作一低通滤波器,会过滤掉一些高频细节信息,如图2所示.此外,由于现有的异质人脸图像合成算法对图像分块多采用相邻块覆盖的方式,故在最后融合生成一整张人脸时需要将重叠区域平均,这也会带来一定的模糊效应,过滤掉部分高频细节信息. 那么是否能够通过学习输入测试照片到残差图像之间的映射关系来学习丢失的高频细节信息?而人脸幻象 (face hall