&">nbsp; 提及摩尔定律,作为计算机发展的第一定律一直在引领IT产业的前行。不过随着多核技术的发展和应用,目前摩尔定律在面临挑战的同时,在某些领域已经被超越。例如在日益普及的高性能计算(HPC)中。那为何摩尔定律会首先在高性能计算领域被超越?这之中又隐含着怎样的产业趋势?
让我们将目光转向1965年,当时,英特尔公司的联合创始人戈登·摩尔预测,在半导体行业内,每18个月芯片上晶体管的数量就会翻番。几乎半个世纪以来,摩尔定律一直有效,它使计算机越来越便宜,运行速度越来越快,同时功能越来越强大。
然而,一直有专家提出警告称,摩尔定律最终也会遭遇物理法则的阻挠,芯片让人眼花缭乱的高增长势头必将终结。专家们的预测一直未曾发生,但是,这种想法也始终在很多人心中盘绕。
首先从代表全球高性能计算水平和趋势的全球高性能计算TOP500近几年性能发展的趋势看,无论是最大性能(全球排名第一的系统)、还是最小性能(全球排名最后)和平均性能,其发展曲线的速度是基本一致的。但与摩尔定律的发展曲线相比,则明显处于陡势的增长态势。这说明这两年来,高性能计算性能和应用的发展速度已经超越了摩尔定律。熟悉摩尔定律的人都知道,摩尔定律有三种解释。一种是集成电路芯片上所集成的电路的数目,每隔18个月就翻一番;第二种是微处理器的性能每隔18个月提高一倍,而价格下降一半;第三种解释是用一个美元所能买到的电脑性能,每隔18个月翻两番。这三种解释中业内引用最多的是第一种。但具体到高性能计算,笔者更愿意用第二或者第三种来解释。
按理说,随着高性能计算性能的不断提升和系统的日益庞大,高性能计算用户无论在初期的采购搭建系统,还是后期的使用中的成本都会大幅的增加,在经济危机的特殊时期,高性能计算如此大的TCO会导致用户的减少和整体性能的下降才对。但前不久发布的全球高性能计算TOP500证明,增长的势头未减,这除了市场和用户的需求外,更在于处理器厂商采用新的技术,在性能提升的同时,让用户以更低的成本享受到更高、更多的计算性能。从这个意义上看,摩尔定律在被延续的同时也正在被超越,即在高性能计算领域,用户性能/投入比远远大于摩尔定律。当然这主要得益于处理器制程、架构技术、多核技术、节能技术、软件优化和快速部署等。
例如从制程和核数上看,最新的全球高性能计算TOP500排名显示,45纳米已经占据了绝对的主流。而多核也达到了全球TOP500的2/3。从部署的速度看,AMD刚刚发布不久的6核就已经有两套进入TOP500中。而英特尔今年3月才正式发布的新的Nehalem多核架构的高性能计算系统更有33套(基于这个处理器的系统)进入TOP500,其中有两套在TOP20里。快速的部署给用户带来的是最新技术和性能的获得。
当然对于用户而言,多核并非是关键,重要的是如何充分发挥多核的效能。这就需要相关的平台技术和软件优化。例如在高性能计算领域,业内都听说过“半宽板”这个标准。这个“半宽板”标准其实是英特尔在几年前提出的,半宽的小板在加高计算密度的同时,节约了很多复用的部件,在加强高性能计算的密度同时,配合散热的技术设计,可以提供更多的计算能力同时降低能耗。这就引出了一个新的发展方向,即高性能计算未来发展就是能耗更多被用于计算性能的提高,而不是散热。此外,就是SSD(固态硬盘),它可以在大幅提高高性能计算系统可靠性和I/O性能的同时,还可以降低功耗。而软件优化更是高性能计算中重中之重的部分,编译器、函数库以及MPI库,所有这些可以帮助ISV能够把多核处理器的计算性能充分发挥出来。
由此来看,在高性能计算领域,单纯的处理器已经不能满足市场和用户的需求,它们需要的是高性能计算平台级的解决技术及方案。这也是为什么在去年全球高性能计算TOP500开始引入能效的主要原因。
说到能效,笔者早就听说在业内有个与摩尔定律同样重要的“基辛格规则”。它是以处理器业界闻名的英特尔首席技术官帕特·基辛格名字命名的。该规则的主旨是今后处理器的发展方向将是研究如何提高处理器能效,并使得计算机用户能够充分利用多任务处理、安全性、可靠性、可管理性和无线计算方面的优势。如果说“摩尔定律”是以追求处理性能为目标,而“基辛格规则”则是追求处理器的能效,这规则目前至少在高性能计算领域已经得到了验证,而它由此带来的是摩尔定律的被超越,即用户将会在更短的周期,以更低的价格获得更高的能效。