C语言中的序列点和副作用

C 语言中,术语副作用(side effect)是指对数据对象或者文件的修改。例如,以下语句        var = 99;
的副作用是把 var 的值修改成 99。对表达式求值也可能产生副作用,例如:
        se = 100
对这个表达式求值所产生的副作用就是 se 的值被修改成 100。
   序列点(sequence point)是指程序运行中的一个特殊的时间点,在该点之前的所有副作用已经结束,并且后续的副作用还没发生。
    C 语句结束标志——分号(;)是序列点。也就是说,C 语句中由赋值、自增或者自减等引起的副作用在分号之前必须结束。我们以后会说到一些包含序列点的运算符。任何完整表达式(full expression)运算结束的那个时间点也是序列点。所谓完整表达式,就是说这个表达式不是子表达式。而所谓的子表达式,则是指表达式中的表达式。例如:
        f = ++e % 3
这整个表达式就是一个完整表达式。这个表达式中的 ++e、3 和 ++e % 3 都是它的子表达式。
    有了序列点的概念,我们下面来分析一下一个很常见的错误:
        int x = 1, y;
        y = x++ + x++;
这里 y = x++ + x++ 是完整表达式,而 x++ 是它的子表达式。这个完整表达式运算结束的那一点是一个序列点,int x = 1, y; 中的 ; 也是一个序列点。也就是说,x++ + x++ 位于两个序列点之间。标准规定,在两个序列点之间,一个对象所保存的值最多只能被修改一次。但是我们清楚可以看到,上面这个例子中,x 的值在两个序列点之间被修改了两次。这显然是错误的!这段代码在不同的编译器上编译可能会导致 y 的值有所不同。比较常见的结果是 y 的值最后被修改为 2 或者 3。在此,我不打算就这个问题作更深入的分析,各位只要记住这是错误的,别这么用就可以了。有兴趣的话,可以看看以下列出的相关资料。
C 语言标准对副作用和序列点的定义如下:
    Accessing a volatile object, modifying an object, modifying a file, or calling a function that does any of those operations are all side effects, which are changes in the state of the execution environment. Evaluation of an expression may produce side effects.
At certain specified points in the execution sequence called sequence points, all side effects of previous evaluations shall be complete and no side effects of subsequent evaluations shall have taken place.
翻译如下:
    访问易变对象,修改对象或文件,或者调用包含这些操作的函数都是副作用,它们都会改变执行环境的状态。计算表达式也会引起副作用。执行序列中某些特定的点被称为序列点。在序列点上,该点之前所有运算的副作用都应该结束,并且后继运算的副作用还没发生。

----------------------------------------------------------------------------------------------
让我们来看看下面的代码:
int i=7; printf(”%d\n”, i++ * i++);
你认为会返回什么?56?no。正确答案是返回 49?很多人会问为什么?难道不该打印出56吗?在ccfaq中有非常详尽的解释,根本原因在于c中的序列点。
请注意,尽管后缀自加和后缀自减操作符 ++ 和 — 在输出其旧值之后才会执行运算,但这里的“之后”常常被误解。没有任何保证确保自增或自减会在输出变量原值之后和对表达式的其它部分进行计算之前立即进行。也不能保证变量的更新会在表达式 “完成” (按照 ANSI C 的术语, 在下一个”序列点”之前) 之前的某个时刻进行。本例中, 编译器选择使用变量的旧值相乘以后再对二者进行自增运算。只有到达一个序列点之后,自增运算才能保证真正被执行。
包含多个不确定的副作用的代码的行为总是被认为未定义。(简单而言, “多个不确定副作用”是指在同一个表达式中使用导致同一对象修改两次或修改以后又被引用的自增,自减和赋值操作符的任何组合。这是一个粗略的定义。) 甚至都不要试图探究这些东西在你的编译器中是如何实现的 (这与许多 C 教科书上的弱智练习正好相反);正如 K&R 明智地指出,”如果你不知道它们在不同的机器上如何实现, 这样的无知可能恰恰会有助于保护你”。
那么,所谓的序列点是什么意思呢?
序列点是一个时间点(在整个表达式全部计算完毕之后或在 ||、 &&、 ? : 或逗号 运算符处, 或在函数调用之前), 此刻尘埃落定,所有的副作用都已确保结束。 ANSI/ISO C 标准这样描述:
在上一个和下一个序列点之间,一个对象所保存的值至多只能被表达式的计算修改一次。而且前一个值只能用于决定将要保存的值。
第二句话比较费解。它说在一个表达式中如果某个对象需要写入, 则在同一表达式中对该对象的访问应该只局限于直接用于计算将要写入的值。这条规则有效地限制了只有能确保在修改之前才访问变量的表达式为合法。
例如 i = i+1 合法,而 a[i] = i++ 则非法。为什么这样的代码:a[i] = i++; 不能工作?子表达式 i++ 有一个副作用 — 它会改变 i 的值 — 由于 i 在同一表达式的其它地方被引用,这会导致无定义的结果,无从判断该引用(左边的 a[i] 中)是旧值还是新值。那么,对于 a[i] = i++; 我们不知道 a[] 的哪一个分量会被改写,但 i 的确会增加 1,对吗?
不一定!如果一个表达式和程序变得未定义,则它的所有方面都会变成未定义。
为什么&& 和 || 运算符可以产生序列点呢?这些运算符在此处有一个特殊的例外:如果左边的子表达式决定最终结果 (即,真对于 || 和假对于 && ) ,则右边的子表达式不会计算。因此,从左至右的计算可以确保,对逗号表达式也是如此。而且,所有这些运算符 (包括 ? : ) 都会引入一个额外的内部序列点。

时间: 2024-09-19 22:54:08

C语言中的序列点和副作用的相关文章

浅谈C/C++ 语言中的表达式求值_C 语言

经常可以在一些讨论组里看到下面的提问:"谁知道下面C语句给n赋什么值?" m = 1; n = m+++m++; 最近有位不相识的朋友发email给我,问为什么在某个C++系统里,下面表达式打印出两个4,而不是4和5: a = 4; cout << a++ << a; C++ 不是规定 << 操作左结合吗?是C++ 书上写错了,还是这个系统的实现有问题? 注:运行a = 4; cout << a++ << a; 如在Visua

不定参数在C语言中的应用实例

不定参数在C语言中的应用实例:不定参数当年做为C/C++语言一个特长被很多人推崇,但是实际上这种技术并没有应用很多.除了格式化输出之外,我实在没看到多少应用.主要原因是这种技术比较麻烦,副作用也比较多,而一般情况下重载函数也足以替换它.尽管如此,既然大家对它比较感兴趣,我就简单总结一下它的使用和需要注意的常见问题. 刚学C语言的时候,一般人都会首先接触printf函数.通过这个函数,你可以打印不定个数的变量到屏幕,如: printf("%d", 3): printf("%d,

C语言中随机函数应用

可能大家都知道C语言中的随机函数random,可是random函数并不是ANSI C标准,所以说,random函数不能在gcc,vc等编译器下编译通过.那么怎么实现C语言中的随机函数呢? 除了random函数,还有一个rand函数,也是一个随机函数,可以产生从0到rand_max的随机数. #include <stdio.h> #include <stdlib.h> int main() { int k; k=rand(); printf("%d\n", k);

Java语言中的函数编程

Java 语言中常被忽视的一个方面是它被归类为一种命令式(imperative)编程语言.命令式编程虽然由于与 Java 语言的关联而相当普及,但是并不是惟一可用的编程风格,也不总是最有效的.在本文中,我将探讨在 Java 开发实践中加入不同的编程方法 ── 即函数编程(FP). 命令式编程是一种用程序状态描述计算的方法.使用这种范型的编程人员用语句改变程序状态.这就是为什么,像 Java 这样的程序是由一系列让计算机执行的命令 (或者语句) 所组成的.另一方面, 函数编程是一种强调表达式的计算

《R的极客理想——高级开发篇 A》一一2.4 R语言中的遗传算法

2.4 R语言中的遗传算法 问题 如何用R语言进行遗传算法的计算? 引言 人类总是在生活中摸索规律,把规律总结为经验,再把经验传给后人,让后人发现更多的规律,每一次知识的传递都是一次进化的过程,最终形成了人类的智慧.自然界的规律,让人类适者生存地活了下来,聪明的科学家又把生物进化的规律,总结成遗传算法,扩展到了更广的领域中.本节将带你走进遗传算法的世界.2.4.1 遗传算法介绍 遗传算法是一种解决最优化的搜索算法,是进化算法的一种.进化算法最初借鉴了达尔文的进化论和孟德尔的遗传学说,从生物进化的

Swift 3 语言中的全模块优化

本文讲的是Swift 3 语言中的全模块优化, 全模块优化是一种 Swift 编译器的优化模式.全模块优化的性能提升很大程度上因项目而异,可达到 2 倍甚至 5 倍的提升. 开启全模块优化可以使用 -whole-module-optimization (或者 -wmo)编译器标识,并且在 Xcode 8 中默认在新项目中被打开.另外 Swift 的包管理器在发布构建中使用全模块优化编译. 那么它是关于什么的?让我们先看看没有全模块优化编译器是如何工作的. 什么是模块和如何编译模块 一个模块是 S

二进制-c语言中按位取反的问题

问题描述 c语言中按位取反的问题 我想要得到111001(二进制),想通过111000与000001按位或得到, 我用-0<<3想得到最后三位是0其余位为1,可是结果printf(""%in""~0<<3)输出为-8,不明白为什么这里虽然0取反为-1,也就是全为1的二进制序列,可左移后为什么是-8 还有如何得到最后一位为1,其余全为0的二进制,我用~(-0<<(sizeof(0)*8-1))得到的值特别大,根本不是1,请教一下 解

java语言中哪一种排序算法用的最多?

问题描述 java语言中哪一种排序算法用的最多? java语言中哪一种排序算法用的最多?快速排序既然效率高,为什么我们还要用冒泡呢?冒泡的好处是什么? 解决方案 不能说快速排序一定效率高,对于有序的序列,归并排序的效率就更高.对于大量小整数的排序,基数排序不但效率高,而且占用内存少.各种排序有不同的使用场合.所以都要学习,而不是问哪种常用. 解决方案二: 冒泡排序是用来理解排序的思路的,快速排序是默认的java排序,但是稳定性极差,建议你去百度八大排序,从快速插入排序开始,系统的学习理解排序.

Go语言中的内存布局详解_Golang

一.go语言内存布局 想象一下,你有一个如下的结构体. 复制代码 代码如下: type MyData struct {         aByte   byte         aShort  int16         anInt32 int32         aSlice  []byte } 那么这个结构体究竟是什么呢? 从根本上说,它描述了如何在内存中布局数据. 这是什么意思?编译器又是如何展现出来呢? 我们来看一下. 首先让我们使用反射来检查结构中的字段. 二.反射之上 下面是一些使用