Tensorflow 全网最全学习资料汇总之Tensorflow 的入门与安装【2】

自2015年11月发布以来,谷歌旗下的机器学习开源框架TensorFlow已经在图像识别,大数据分析,语音识别和语义理解,机器翻译等各个领域得到了广泛应用,同时也得到了业内人士的普遍认可,成为了目前最受关注和使用率最高的开源框架之一。

本文将重点整理TensorFlow框架的入门和安装教程。更多关于TensorFlow的深入介绍、应用项目以及各机器学习开源框架之间的对比等内容,请见雷锋网的系列文章。

下面是本文整理的资料内容:

在安装之前,这里先列出一些对TensorFlow给出大略介绍的文章,其中包括一些重要的概念解释,TensorFlow的具体含义和优点,以及TensorFlow的基本工作原理等。

1. 《TensorFlow极速入门》

链接:http://www.leiphone.com/news/201702/vJpJqREn7EyoAd09.html

本文介绍了 graph 与 session 等基本组件,解释了 rank 和 shape 等基础数据结构概念,讲解了一些 variable 需要注意的地方并介绍了 placeholders 与 feed_dict 。最终以一个手写数字识别的实例将这些点串起来进行了具体说明。

2. 《TensorFlow学习笔记1:入门》

链接:http://www.jeyzhang.com/tensorflow-learning-notes.html

本文与上一篇的行文思路基本一致,首先概括了TensorFlow的特性,然后介绍了graph、session、variable 等基本概念的含义,以具体代码的形式针对每个概念给出了进一步的解释。最后通过手写数字识别的实例将这些点串起来进行了具体说明。

需要指出的是,两篇文章覆盖的基础概念不尽相同,并且举例用的代码也不一样。

3. 《TensorFlow入门》

链接:http://www.jianshu.com/p/6766fbcd43b9#

与上面两篇不同,本文简单介绍了 TensorFlow 的含义、优点、安装和基本工作原理之后,直接通过代码示例的方式讲解了 TensorFlow 的简单用法,包括生成三维数据,然后用一个平面拟合它,以及通过 variable 实现一个简单的计数器等。

值得一提的是,以上第二和第三篇分别来自两个系列文章,这两个系列也都是关于 TensorFlow 入门和实践的优秀博客。第二篇的后续文章讲述了卷积神经网络(CNN)模型构建,以及利用 TensorFlow 生成词向量 (Word Embedding) 的具体过程。第三篇则实际上是基于斯坦福大学基于深度学习的自然语言处理课程的学习笔记,该系列其他的文章还讲述了循环神经网络(RNN)和 word2vec 模型等更深入的知识,感兴趣的读者可以从文章的作者页找到更多文章。

上述文章都更倾向于 TensorFlow 的简单介绍了基础用法,但对于TensorFlow具体安装过程的讲述则不够细致。因此这里专门针对TensorFlow的安装过程推荐一篇教程。

4. 《真正从零开始,TensorFlow详细安装入门图文教程!》

链接:http://www.leiphone.com/news/201606/ORlQ7uK3TIW8xVGF.html

上文来自雷锋网小编的亲身实践,真正做到了从零开始,详细介绍了在Linux环境下如何通过pip命令安装TensorFlow框架的完整流程,以及面对一些常见问题的处理办法。值得一提的是,本文在讲解完框架安装之后,还针对Komodo开发环境进行了简单介绍。

经过了以上来自民间的实践教程之后,相信各位读者对TensorFlow的大致情况和具体安装方法已经有了自己的理解。下面对于那些想要更全面和深入地了解TensorFlow的读者,我们推荐几个官方的教程。

5. 谷歌官方入门教程

链接:https://www.tensorflow.org/get_started/

6. 谷歌教程翻译

https://github.com/jikexueyuanwiki/tensorflow-zh

这里谷歌给出的入门教程内容十分丰富,除了最基本的安装、名词解释和代码示例之外,还给出了 API 接口的详细解释和说明。但考虑到内容全是英文,因此雷锋网(公众号:雷锋网)在这里给出了国内志愿者对谷歌内容的中文翻译版,可以为那些英文不好的读者提供参考。

7. TensorFlow中文社区

http://www.tensorfly.cn/

最后我们在这里推荐一个 TensorFlow 的中文社区,该网站几乎可以认为是 TensorFlow 的中文官网,除了上述谷歌官方教程的中文翻译之外,该网站还包括进阶指南、API中文手册、精华文章和TF社区等诸多板块。

本文作者:AI研习社

本文转自雷锋网禁止二次转载,原文链接

时间: 2024-10-28 06:33:11

Tensorflow 全网最全学习资料汇总之Tensorflow 的入门与安装【2】的相关文章

TensorFlow 全网最全学习资料汇总之TensorFlow的技术应用【4】

随着谷歌2015年发布开源人工智能系统TensorFlow,让本就如火如荼的深度学习再添一把火,截至现在,TensorFlow已经历了多个版本演进,功能不断完善,AI开发者也能灵活自如的运用TensorFlow解决一些实际问题,下面雷锋网会对一些比较实用的TensorFlow应用做相关整理,让大家对TensorFlow有理性和感性的双层认知. TensorFlow在图像识别中的应用 对人类而言,区分画面.图像就如同与生俱来一样简单,例如我们能够轻松的识别老虎与雄狮的区别,但如果把这个问题交给计算

Tensorflow 全网最全学习资料汇总之Tensorflow的迭代更新【1】

谷歌于2015年11月发布了全新人工智能系统TensorFlow.该系统可被用于语音识别或照片识别等多项机器深度学习领域,主要针对2011年开发的深度学习基础架构DistBelief进行了各方面的改进,它可在小到一部智能手机.大到数千台数据中心服务器的各种设备上运行. 那么为什么会产生TensorFlow系统,以及谷歌为何将其开源?这个问题可以看雷锋网文章<Google开源TensorFlow系统,这背后都有什么门道?>. 2016年4月14日,Google发布了分布式TensorFlow,版

Tensorflow 全网最全学习资料汇总之框架平台的综合对比【3】

作为机器学习领域.尤其是 Python 生态圈最受欢迎的框架平台,TensorFlow 具有许多吸引开发者的优点.其中最显而易见的是谷歌的技术支持和完善的社区(庞大用户群).这些都为 TensorFlow 的普及打下了基础.但是,开发者需要了解 Tensorflow 在技术上有哪些值得一提的优势,又有哪些不足,以便在处理特定任务时进行工具选择.而这些,必须要在与其他平台.框架的对比中才能凸显.顺便说一句老生常谈的话,没有万能的工具,只有在不同应用场景下最合适的选择.因此,雷锋网整理了介绍 Ten

(zhuan) 深度学习全网最全学习资料汇总之模型介绍篇

  This blog from : http://weibo.com/ttarticle/p/show?id=2309351000224077630868614681&u=5070353058&m=4077873754872790&cu=5070353058   深度学习全网最全学习资料汇总之模型介绍篇 雷锋网  作者: 三川 2017-02-21 16:38:00 查看源网址 阅读数:4       本文旨在加速深度学习新手入门,介绍 CNN.DBN.RNN.RNTN.自动编码

(转) 深度学习全网最全学习资料汇总之入门篇

  本文转自: http://www.dlworld.cn/ZiLiaoXiaZai/3428.html 深度学习全网最全学习资料汇总之入门篇  作为人工智能领域一个重要的研究分支,深度学习技术几乎出现在当下所有热门的AI应用领域,包括语音识别,语义理解,图像识别,大数据分析等等,甚至有人把当前的人工智能等同于深度学习.面对如此重要的江湖地位,我们相信一定有为数众多的 AI 开发者对深度学习技术充满了好奇心,想要快速着手使用这项强大的技术来解决现实生活中的实际问题.因此,雷锋网将围绕深度学习技术

深度学习全网最全学习资料汇总之模型介绍篇

本文旨在加速深度学习新手入门,介绍 CNN.DBN.RNN.RNTN.自动编码器.GAN 等开发者最常用的深度学习模型与架构.雷锋网搜集整理了涉及以上话题的精品文章,供初学者参考. 卷积神经网络 CNN 深度学习元老Yann Lecun详解卷积神经网络 Yann Lecun 的 CNN 话题演讲+ppt. 链接:http://www.leiphone.com/news/201608/zaB48AcZ1AFm1TaP.html 卷积神经网络(CNN)新手指南 翻译自国外的 CNN 教程,解释详细,

深度学习全网最全学习资料汇总之入门篇

作为人工智能领域一个重要的研究分支,深度学习技术几乎出现在当下所有热门的AI应用领域,包括语音识别,语义理解,图像识别,大数据分析等等,甚至有人把当前的人工智能等同于深度学习.面对如此重要的江湖地位,我们相信一定有为数众多的 AI 开发者对深度学习技术充满了好奇心,想要快速着手使用这项强大的技术来解决现实生活中的实际问题.因此,雷锋网(公众号:雷锋网)将围绕深度学习技术整理一个系列文章,全面覆盖与其相关的各项知识点. 本文针对如何入门深度学习这一话题,整理了若干参考资料,希望对广大开发者有所裨益

tensorflow实现基于深度学习的图像补全

目录■ 简介 ■ 第一步:将图像理解为一个概率分布的样本      你是怎样补全缺失信息的呢?      但是怎样着手统计呢?这些都是图像啊.      那么我们怎样补全图像?  ■ 第二步:快速生成假图像      在未知概率分布情况下,学习生成新样本      [ML-Heavy] 生成对抗网络(Generative Adversarial Net, GAN) 的架构      使用G(z)生成伪图像      [ML-Heavy] 训练DCGAN      现有的GAN和DCGAN实现  

综述 | 一文读懂自然语言处理NLP(附学习资料)

前言 自然语言处理是文本挖掘的研究领域之一,是人工智能和语言学领域的分支学科.在此领域中探讨如何处理及运用自然语言. 对于自然语言处理的发展历程,可以从哲学中的经验主义和理性主义说起.基于统计的自然语言处理是哲学中的经验主义,基于规则的自然语言处理是哲学中的理性主义.在哲学领域中经验主义与理性主义的斗争一直是此消彼长,这种矛盾与斗争也反映在具体科学上,如自然语言处理. 早期的自然语言处理具有鲜明的经验主义色彩.如 1913 年马尔科夫提出马尔科夫随机过程与马尔科夫模型的基础就是"手工查频&quo