[复变函数]第13堂课 作业讲解; 4 解析函数的幂级数表示法 4.1 复级数的基本性质

第13堂课 作业讲解; 4 解析函数的幂级数表示法 4. 1 复级数的基本性质}

 

作业讲解: P 139 - 141, T 1, T 2 (2) , T 6, T 10 (1) , T 16 (1) .

 

1. 复数项级数

(1) 定义: 无穷多个复数相加, 即 $\dps{\vsm{n}\al_n=\al_1+\al_2+\cdots+\al_n+\cdots}$. 部分和: $\dps{s_n=\sum_{k=1}^n\al_k}$. 收敛或发散: $\dps{\vlm{n}s_n=s\lra \vsm{n}\al_n}$ 收敛 (于 $s$); $\sed{s_n}$ 发散 $\dps{\lra \vsm{n}\al_n}$ 发散.

(2) 与实数项级数的联系: 设 $\al_n=a_n+ib_n$, 则 $$\bex \vsm{n}\al_n=s=a+ib\lra \vsm{n}a_n=a,\ \vsm{n}b_n=b. \eex$$ [简言之, 实部的和 $=$ 和的实部; 虚部的和 $=$ 和的虚部]

(3) 例: $\dps{\vsm{n}\sex{\cfrac{1}{n}+\cfrac{i}{2^n}}}$, $\dps{\vsm{n}i^n}$.

(4) 敛散性判定准则

a. Cauchy 收敛准则: $\dps{\vsm{n}\al_n}$ 收敛 $\lra\ \forall\ \ve>0,\ \exists\ N,\ \forall\ n\geq N,\ \forall\ p\geq 1$, $\dps{\sev{\sum_{k=n+1}^{n+p}\al_k}<\ve}$.

b. 模级数准则: $\dps{\vsm{n}|\al_n|<\infty\ra \vsm{n}\al_n}$ 收敛.

c. 例: $\dps{|z|<1\ra \vsm{n}z^n}$ 收敛.

(5) 绝对收敛、条件收敛与发散

a. $$\beex \bea \mbox{级数}\sedd{\ba{ll}\mbox{收敛}\sedd{\ba{ll} \mbox{绝对收敛}\\ \mbox{条件收敛} \ea}\\ \mbox{发散} \ea} \eea \eeex$$

b. 绝对收敛与 Cauchy 乘积: 若 $\dps{\vsm{n}\al_n=s}$, $\sed{\vsm{n}\al_n'=s'}$, 则其 Cauchy 乘积 $$\bex \vsm{n}\sum_{k=1}^n\al_k\al_{n+1-k}'=ss', \eex$$ 且为绝对收敛.

 

2. 复函数项级数

(1) 定义: $\dps{\vsm{n}f_n(z)}$, $z\in E$. 和函数: $\dps{f(z)==\sum_{k=1}^n f_k(z),\ z\in D}$, 即 $$\bex \forall\ \ve>0,\ \exists\ N(\ve,z),\ \forall n\geq N, \sev{\sum_{k=1}^n f_k(z)-f(z)}<\ve. \eex$$

(2) 一致收敛: ``$\dps{\vsm{n}f_n(z)}$ 在 $D$ 上一致收敛于 $f(z)$'' 是指 $$\bex \forall\ \ve>0,\ \exists\ N(\ve),\ \forall n\geq N, \sev{\sum_{k=1}^n f_k(z)-f(z)}<\ve. \eex$$ 提问: ``$\dps{\vsm{n}f_n(z)}$ 在 $D$ 上不一致收敛于 $f(z)$'' 的数学语言是什么?

(3) 一致收敛的判定准则

a. Cauchy 收敛准则.

b. Weierstrass 优级数判定准则.

(4) 一致收敛的性质

a. 和函数连续 (极限与求和交换次序)

b. 可逐项积分 (积分与求和交换次序)、

(5) 内闭一致收敛: $D$ 内任一有界闭集上收敛.

a. 例: $\dps{\vsm{n}z^n}$ 在 $|z|<1$ 内内闭一致收敛.

 

3. 解析函数项级数

(1) 定义: $\dps{\vsm{n}f_n(z),\ z\in D}$, 其中 $f_n(z)$ 在 $D$ 内解析.

(2) 性质: 若解析函数项级数 $\dps{\vsm{n}f_n(z),\ z\in D}$ 在 $D$ 内内闭一致收敛, 则和函数解析, 并可逐项求导: $$\bex f^{(p)}(z)=\vsm{n} f_n^{(p)}(z),\quad z\in D,\ p\geq 1. \eex$$

 

作业: P 174 T 1 (1) . 

时间: 2024-07-31 03:08:10

[复变函数]第13堂课 作业讲解; 4 解析函数的幂级数表示法 4.1 复级数的基本性质的相关文章

[复变函数]第09堂课 作业讲解; 3 复变函数的积分 3.1 复积分的概念及其简单性质

作业讲解: P 90-92 T 5 (3) , 8 (1) , 13 (1) , 20 (1) , 22, 23.   0. 一些规定 (1) 今后所指曲线均指光滑或逐段光滑的. 逐段光滑的简单闭曲线称为周线. (2) 曲线的方向: 开口弧的情形只需指出始点.终点; 周线的情形, 参考 Jordan 曲线的情形.   1. 定义: 分割.求和.取极限. 设有向线段 $C:\ z=z(t),\ \al\leq t\leq \beta$ (起点 $z(\al)$, 终点 $z(\beta)$), $

[复变函数]第11堂课 3.3 Cauchy 积分定理及其推论

0. 引言 (1) Cauchy 积分定理: 设 $D$ 为 $(n+1)$ 连通区域, $f$ 在 $D$ 内解析且连续到边界 $C$, 则 $\dps{\int_C f(\zeta)\rd \zeta=0}$. (2) 若 $f$ 在 $D$ 内有奇点, 怎么办? 挖掉它! $$\bex \int_C \cfrac{1}{(\zeta-z)^n}\rd \zeta =\sedd{\ba{ll} 2\pi i,&n=1\\ 0&1\neq n\in\bbZ \ea}\quad\sex{z

[复变函数]第03堂课 1.2 复平面上的点集

    1. 平面点集的几个基本概念 (1) 邻域 $$\bex N_\rho(z_0)=\sed{z\in\bbC;\ |z-z_0|<\rho}, \eex$$ 去心邻域 $N_\rho(z_0)\bs \sed{z_0}$. (2) 点列 $z_n\to z_0$, 若 $$\bex \forall\ \ve>0, \exists\ N,\ \forall\ n\geq N,\ |z_n-z_0|<\ve\mbox{ 即 }z_n\in N_\ve(z_0). \eex$$ (3)

[复变函数]第02堂课 1.1 复数 (续)

4. 一些概念及性质                   (1)              $$\beex             \bea             z=x\in\bbR&\quad\mbox{实数},\\             z=x+iy\ (y\neq 0)&\quad\mbox{虚数},\\             z=iy\ (y\neq 0)&\quad\mbox{纯虚数}.             \eea             \eeex$$  

[复变函数]第10堂课 3.2 Cauchy 积分定理

    0. 引言 (1) $\dps{\int_{|z-a|=\rho}\frac{1}{z-a}\rd z=2\pi i\neq 0}$: 有奇点 (在 $|z|>0$: 二连通区域内解析), 周线积分 $\neq 0$; (2) $\dps{\int_{0\to 1+i}\Re z\rd z=\frac{1+i}{2}}$, $\dps{\int_{0\to 1}+\int_{1+1+i}\Re z\rd z=\frac{1}{2}+i}$: 不解析, 积分与路径有关, 周线积分 $\ne

[复变函数]第21堂课 6 留数理论及其应用 6. 1 留数

0.  引言---回忆 (1)  Cauchy 积分公式 (第三章) $$\beex \bea f\mbox{ 在 }D\mbox{ 内解析}, \mbox{ 在 }\bar D=D+\p D\mbox{ 上连续}&\ra \int_C \cfrac{f(z)}{z-a}\rd z=2\pi if(a),\quad a\in D\\ &\ra \int_C \cfrac{f(z)}{(z-a)^{n+1}}\rd z=\cfrac{2\pi i}{n!}f^{(n)}(a),\quad a

[复变函数]第20堂课 5.4 整函数与亚纯函数的概念

1.  整函数 (entire function) (1)  定义: 若 $f$ 在 $\bbC$ 上解析, 则称 $f$ 为整函数. (2)  性质: $\dps{f(z)=\sum_{n=0}^\infty c_nz^n,\ 0\leq |z|<\infty}$. (3)  例: $f(z)=e^z,\sin z,\cos z$. (4)  分类 (按 $\infty$ 为 $f$ 的哪类奇点) $$\beex \bea \infty\mbox{ 为 }f\mbox{ 的可去奇点}&\l

[复变函数]第04堂课 1. 3 复变函数

1. 概念 (1) 单值函数.多值函数 $w=f(z)$ a. 例: $w=|z|,\bar z, z^2, \cfrac{z+1}{z-1}\ (z\neq 1), \sqrt[n]{z}\ (z\neq 0,\ n\geq 2),\ \Arg z\ (z\neq 0).$ b. 不特别声明, 以后均指单值函数. c. 函数的表示: $$\beex \bea &\quad w=f(z),\ w=u+iv,\ z=x+iy=re^{i\tt}\\ &\ra w=u(x,y)+iv(x,y)

[复变函数]第06堂课 2.1 解析函数的概念与 Cauchy-Riemann 方程 (续)

2. 解析函数及其简单性质 (1) 定义: a. 若 $w=f(z)$ 在区域 $D$ 内可微, 则称 $f$ 在 $D$ 内解析; b. 若 $w=f(z)$ 在 $z_0$ 处的某邻域内解析, 则称 $f$ 在 $z_0$ 处解析; c. 若 $f$ 在闭域 $\bar D$ 的某个邻域内解析, 则称 $f$ 在 $\bar D$ 上解析; d. 若 $f$ 在 $z_0$ 处不解析 ($\forall\ \rho>0,\ \exists\ z\in U_\rho(z_0),\st f$ 在