小白学数据分析----->如何设计和分析数据指标

今天说到的这个题目,看起来有点大,不过作为游戏数据分析师,早晚都要设计和分析数据指标。在《移动游戏运营数据分析指标白皮书》(http://www.xuefenxi.com/forum.php?mod=viewthread&tid=2&extra=page%3D1)中,提炼了一些针对游戏数据分析的指标,这只是分析工作的第一步,还要有效的组织起来,并按照需求进行细分,即按需进行二次设计和分析。白皮书的指标旨在规范大家对于一些最基本最常用概念的认识和学习,有所领悟,有所发挥。

而今天说的是在当我们要在之前的基础数据基础上进行二度的分析,该如何把握设计和分析数据指标?首先,先引用一句话:

“对于驱动用户体验决策而言,有意义的成功标准一定是可以明确地与用户行为绑定的标准,而这些用户行为也一定是可以通过设计来影响的行为”

                                                                                                                                                                   用户体验要素--以用户为中心的产品设计

书籍下载

http://www.xuefenxi.com/forum.php?mod=viewthread&tid=3&extra=page%3D1

看到这句话,其实感慨很多,尤其是那些数据分析经验非常丰富的人,其实应该非常认同这句话。数据分析以解决问题为第一要义,然而很多新人看到或者设计了很多很复杂的指标和算法进行问题的分析,其实这个时候,如果仔细审视一下就会发现,我们设计的标准与我们的分析和解决问题的目的是背离了,尽管有了很好的设计和数据,但是问题依旧是没有解决,而这样的指标就算不上一个成功的指标,为什么DAU/MAU这样的指标成为了大家比较认可的标准,因为这是可以拿去衡量游戏是否具有比较好的粘性的标准。

但是,上述我们谈到的只是我引用的这句话的前半段,我说到了,数据分析要解决问题的,因此指标绑定的用户行为,经过分析后,如果不能通过我们的设计者予以改进,并衡量前后改进的效果,那么这样的指标就意味着价值不大。作为一款产品,我们的确需要知道用户是什么样的,有效的数据指标设计,能够帮助我们立体展现出来我们用户的行为和画像。但是往往数据分析不只是告诉你用户是什么样子的,还要针对这些特征,采取有效的措施和运营手段,成功的标准最后其实帮助我们去挖掘和发现,我们的措施和设计,是否最后改善了效果,成功的标准不仅仅是绑定,更是实施。

对于数据驱动的游戏运营而言,有意义的数据指标一定是可以明确绑定游戏问题的标准,而这些游戏问题也一定是可以通过研发、设计、运营来解决问题的。

不过,最后还要说一点的是,虽然我们需要成功的标准来帮助我们去改进产品,做好运营,不过再成功的标准也只是一个一个孤立的数据指标点,这样的结果,就容易造成我们看不到问题的全貌,而造成错误的分析结论,因此,切记,必要的时候要记得退一步。

 

时间: 2024-09-21 22:19:51

小白学数据分析----->如何设计和分析数据指标的相关文章

小白学数据分析------>日活跃人数分析

从今天开始,特开辟一个小专栏,题目暂定为小白学数据分析,鄙人不才,在数据分析的道路上走的崎岖坎坷,同时数据分析本身是一个多面和复杂的工作,要懂得理论(统计.概率.数据挖掘.算法.模型)更要懂得业务,懂得行业理论,还要有灵活多变的思维,想想还是很复杂和麻烦的,所讲内容不但是理论,不仅是数据,尽量把这些东西综合起来,立体的来看,鄙人水平有限,很多的内容是尝试和改进,参考了很多的材料,在木有高人指点和牛人帮助的情况下,我只能借助浩瀚的网络知识和自己的悟性,今天决心拿出来给各位主要是帮助大家和我一起进步

小白学数据分析------>相关分析之距离分析在道具购买量的应用探索

  前几天,写过一篇关于相关分析的的文章,很多人都看到了并有很多人在咨询关于这篇文章的一些内容,相关分析是一类很有用的分析方法,如之前所提到的,相关分析由三部分组成,前几日的文章是讲了其中第一部分,第二部分是偏相关分析,第三部分就是复相关分析,说白了其实就是相关分析变量的多少来确定这三部分的.今天这里不谈偏相关分析,以为网友给我截图,问我下面的成交量相关系数的是怎么算出来的,其实这个就是复相关的典型应用,多变量的相关分析.插一句,该图来自于腾讯大讲堂15-市场研究及数据分析理念及方法概要介绍.大

小白学数据分析----->渠道、运营、数据_I

学分析论坛|专注于游戏数据分析 针对本文的相关的讨论,请移步http://www.xuefenxi.com/forum.php?mod=viewthread&tid=112&extra= 上周六做了一个演讲,关于渠道.数据.运营的内容,今天开始,针对演讲的一些内容,有针对性的阐述一下.不过既然我是一个数据分析师,自然还是从数据分析角度来看待这个问题,在后期的文章中,我会加入一些案例,帮助理解. 渠道是最有效的获取潜在用户的方式 渠道存在海量的用户资源,并服务于开发者.渠道本身聚合了大量的用

小白学数据分析----->首次购买记录分析方法

最近几天比较忙,大家都在问如何建立比较完整和有效的数据分析平台,说实话这个问题我考虑了很久,有效并有深度得数据挖掘与分析平台对于游戏产品的质量改善,人气.收益的提升,玩家资源的保有 ,客群分析非常有必要.众多经分系统的好处不在此处解释,且看今天讨论的内容,首次购买记录分析. 在如今道具收费的免费游戏中,首次购买记录的分析发挥着巨大的作用,这与电商的购买不太一样,还是存在很大的区别.道具收费的游戏中,道具购买是我们收益的主体,如何对于道具购买的分析是非常重要的一环. 由于道具收费的免费游戏,玩家存

小白学数据分析----->从购买记录分析道具支付环节

昨天发现充值异常增高,于是准备做一次详尽的分析,但是当我开始提取数据时,发现了一件比较异常的事情,这是在查询玩家的购买记录时发现的(这是因为往往我们要分析充值时,也要辅助的去看一下当日的购买情况),截图如下: 可以看得到玩家对于该道具的购买需求很高,在一段时间内不断的购买,但是商城不支持批量购买,玩家每次交易只能买一件,然后再次点击再次购买.看到这里,我点蛋疼了. 针对这个问题,昨晚和BOSS聊了一些,就是在讨论商城购买支付环节的问题.总的理解起来是目前的商城购买UI已经是确定符合玩家的习惯的U

小白学数据分析-----> 有关于流失分析的探讨

早先我曾探讨一个关于流失分析的整套流程问题,也说了流失分析是如何的重要,大概这种解说是苍白无力的,因为拿不出数据来说明这个问题,因此大家就会感觉比较飘渺,今天就是流失分析再次进行探讨,这次从数据的角度来理解为什么要做好流失分析. 挽留一个老用户相比于拉动一个新用户,在游戏收入.产品周期维护方面都有好处的,只是我们现在解决用户入口的问题,但是没有重视用户流失的问题.这个问题就好像一个水池子,有进口,但是也有出口,我们不能只关注进口的进水速率,却忽略了出水口的出水速率.这点对应了我们对于指标的量化和

小白学数据分析----->数据指标 累计用户数的使用

小白学数据分析--à数据指标累计用户数的使用 累计用户数是指注册用户数的累计,即可以认为是新用户的累计.在一般的数据统计中,我们基本上都会涉及到这个指标,且这个指标是逐渐累加的,比如: 时间                   注册用户数[新登用户]           累计注册用户数 1日                    100                                                 100 2日                    120   

小白学数据分析----->付费用户的金字塔模型实践操作

免费游戏中付费用户模型分析 最近看了不少文章,对于付费用户的模型也有了很深刻的理解和认识,早先我做了不少关于大R,中间R,低端R用户的分析,想来还是觉得草草了事,近来有网友提出来,理论探讨的多了些,实践上手的东西少了点,毕竟还是叫做小白学数据分析啊,今天就把以前说过的付费用户的模型具体的实践一下. 感悟和理论 得到的灵感首先要感谢Nicholas Lovell 的这篇文章,是我得到了一些处理和分析这个模型的办法.连接如下: http://www.gamesbrief.com/2011/11/wh

小白学数据分析----->流失分析设计

前段时间说过一些关于玩家生命周期的问题,其实那些有点大,有点虚,从宏观的角度了解我们此时此刻正在做的分析是属于那一部分,哪一个体系的,说实话,这是为了建立一种意识而要做的工作,玩家生命周期价值源于电信行业的客户生命周期管理和PLC(产品生命周期)的解读和应用,限于本人水平和能力因素,不够深刻,全面,在此请各位谅解,以后的内容会逐步深入到这个体系之下的很多细节的问题探讨,今天就和大家简单说说流失率. 说到流失率,我们可以考察,可以分析,可以利用的点实在是太多了,这里我也不可能把所有的东西都覆盖,仅