linux内核数据结构之链表

1、前言

   最近写代码需用到链表结构,正好公共库有关于链表的。第一眼看时,觉得有点新鲜,和我之前见到的链表结构不一样,只有前驱和后继指针,而没有数据域。后来看代码注释发现该代码来自linux内核,在linux源代码下include/Lish.h下。这个链表具备通用性,使用非常方便。只需要在结构定义一个链表结构就可以使用。

2、链表介绍

  链表是非常基本的数据结构,根据链个数分为单链表、双链表,根据是否循环分为单向链表和循环链表。通常定义定义链表结构如下:

typedef struct node
{
     ElemType data;      //数据域
     struct node *next;  //指针域
}node, *list;

链表中包含数据域和指针域。链表通常包含一个头结点,不存放数据,方便链表操作。单向循环链表结构如下图所示:

双向循环链表结构如下图所示:

  这样带数据域的链表降低了链表的通用性,不容易扩展。linux内核定义的链表结构不带数据域,只需要两个指针完成链表的操作。将链表节点加入数据结构,具备非常高的扩展性,通用性。链表结构定义如下所示:

struct list_head {
    struct list_head *next, *prev;
};

链表结构如下所示:

  需要用链表结构时,只需要在结构体中定义一个链表类型的数据即可。例如定义一个app_info链表,

1 typedef struct application_info
2 {
3     uint32_t  app_id;
4     uint32_t  up_flow;
5     uint32_t  down_flow;
6     struct    list_head app_info_head;  //链表节点
7 }app_info;

定义一个app_info链表,app_info app_info_list;通过app_info_head进行链表操作。根据C语言指针操作,通过container_of和offsetof,可以根据app_info_head的地址找出app_info的起始地址,即一个完整ap_info结构的起始地址。可以参考:http://www.cnblogs.com/Anker/p/3472271.html

3、linux内核链表实现

  内核实现的是双向循环链表,提供了链表操作的基本功能。

(1)初始化链表头结点

#define LIST_HEAD_INIT(name) { &(name), &(name) }

#define LIST_HEAD(name) \
    struct list_head name = LIST_HEAD_INIT(name)

static inline void INIT_LIST_HEAD(struct list_head *list)
{
    list->next = list;
    list->prev = list;
}

LIST_HEAD宏创建一个链表头结点,并用LIST_HEAD_INIT宏对头结点进行赋值,使得头结点的前驱和后继指向自己。

INIT_LIST_HEAD函数对链表进行初始化,使得前驱和后继指针指针指向头结点。

(2)插入节点

 1 static inline void __list_add(struct list_head *new,
 2                   struct list_head *prev,
 3                   struct list_head *next)
 4 {
 5     next->prev = new;
 6     new->next = next;
 7     new->prev = prev;
 8     prev->next = new;
 9 }
10
11 static inline void list_add(struct list_head *new, struct list_head *head)
12 {
13     __list_add(new, head, head->next);
14 }
15
16 static inline void list_add_tail(struct list_head *new, struct list_head *head)
17 {
18     __list_add(new, head->prev, head);
19 }

  插入节点分为从链表头部插入list_add和链表尾部插入list_add_tail,通过调用__list_add函数进行实现,head->next指向之一个节点,head->prev指向尾部节点。

(3)删除节点

 1 static inline void __list_del(struct list_head * prev, struct list_head * next)
 2 {
 3     next->prev = prev;
 4     prev->next = next;
 5 }
 6
 7 static inline void list_del(struct list_head *entry)
 8 {
 9     __list_del(entry->prev, entry->next);
10     entry->next = LIST_POISON1;
11     entry->prev = LIST_POISON2;
12 }

  从链表中删除一个节点,需要改变该节点前驱节点的后继结点和后继结点的前驱节点。最后设置该节点的前驱节点和后继结点指向LIST_POSITION1和LIST_POSITION2两个特殊值,这样设置是为了保证不在链表中的节点项不可访问,对LIST_POSITION1和LIST_POSITION2的访问都将引起页故障

/*
 * These are non-NULL pointers that will result in page faults
 * under normal circumstances, used to verify that nobody uses
 * non-initialized list entries.
 */
#define LIST_POISON1  ((void *) 0x00100100 + POISON_POINTER_DELTA)
#define LIST_POISON2  ((void *) 0x00200200 + POISON_POINTER_DELTA)

(4)移动节点

 1 /**
 2  * list_move - delete from one list and add as another's head
 3  * @list: the entry to move
 4  * @head: the head that will precede our entry
 5  */
 6 static inline void list_move(struct list_head *list, struct list_head *head)
 7 {
 8     __list_del(list->prev, list->next);
 9     list_add(list, head);
10 }
11
12 /**
13  * list_move_tail - delete from one list and add as another's tail
14  * @list: the entry to move
15  * @head: the head that will follow our entry
16  */
17 static inline void list_move_tail(struct list_head *list,
18                   struct list_head *head)
19 {
20     __list_del(list->prev, list->next);
21     list_add_tail(list, head);
22 }

move将一个节点移动到头部或者尾部。

(5)判断链表

 1 /**
 2  * list_is_last - tests whether @list is the last entry in list @head
 3  * @list: the entry to test
 4  * @head: the head of the list
 5  */
 6 static inline int list_is_last(const struct list_head *list,
 7                 const struct list_head *head)
 8 {
 9     return list->next == head;
10 }
11
12 /**
13  * list_empty - tests whether a list is empty
14  * @head: the list to test.
15  */
16 static inline int list_empty(const struct list_head *head)
17 {
18     return head->next == head;
19 }

list_is_last函数判断节点是否为末尾节点,list_empty判断链表是否为空。

(6)遍历链表

 1 /**
 2  * list_entry - get the struct for this entry
 3  * @ptr:    the &struct list_head pointer.
 4  * @type:    the type of the struct this is embedded in.
 5  * @member:    the name of the list_struct within the struct.
 6  */
 7 #define list_entry(ptr, type, member) \
 8     container_of(ptr, type, member)
 9
10 /**
11  * list_first_entry - get the first element from a list
12  * @ptr:    the list head to take the element from.
13  * @type:    the type of the struct this is embedded in.
14  * @member:    the name of the list_struct within the struct.
15  *
16  * Note, that list is expected to be not empty.
17  */
18 #define list_first_entry(ptr, type, member) \
19     list_entry((ptr)->next, type, member)
20
21 /**
22  * list_for_each    -    iterate over a list
23  * @pos:    the &struct list_head to use as a loop cursor.
24  * @head:    the head for your list.
25  */
26 #define list_for_each(pos, head) \
27     for (pos = (head)->next; prefetch(pos->next), pos != (head); \
28             pos = pos->next)

宏list_entity获取链表的结构,包括数据域。list_first_entry获取链表第一个节点,包括数据源。list_for_each宏对链表节点进行遍历。

4、测试例子

编写一个简单使用链表的程序,从而掌握链表的使用。

自定义个类似的list结构如下所示:mylist.h

 1 # define POISON_POINTER_DELTA 0
 2
 3 #define LIST_POISON1  ((void *) 0x00100100 + POISON_POINTER_DELTA)
 4 #define LIST_POISON2  ((void *) 0x00200200 + POISON_POINTER_DELTA)
 5
 6 //计算member在type中的位置
 7 #define offsetof(type, member)  (size_t)(&((type*)0)->member)
 8 //根据member的地址获取type的起始地址
 9 #define container_of(ptr, type, member) ({          \
10         const typeof(((type *)0)->member)*__mptr = (ptr);    \
11     (type *)((char *)__mptr - offsetof(type, member)); })
12
13 //链表结构
14 struct list_head
15 {
16     struct list_head *prev;
17     struct list_head *next;
18 };
19
20 static inline void init_list_head(struct list_head *list)
21 {
22     list->prev = list;
23     list->next = list;
24 }
25
26 static inline void __list_add(struct list_head *new,
27     struct list_head *prev, struct list_head *next)
28 {
29     prev->next = new;
30     new->prev = prev;
31     new->next = next;
32     next->prev = new;
33 }
34
35 //从头部添加
36 static inline void list_add(struct list_head *new , struct list_head *head)
37 {
38     __list_add(new, head, head->next);
39 }
40 //从尾部添加
41 static inline void list_add_tail(struct list_head *new, struct list_head *head)
42 {
43     __list_add(new, head->prev, head);
44 }
45
46 static inline  void __list_del(struct list_head *prev, struct list_head *next)
47 {
48     prev->next = next;
49     next->prev = prev;
50 }
51
52 static inline void list_del(struct list_head *entry)
53 {
54     __list_del(entry->prev, entry->next);
55     entry->next = LIST_POISON1;
56     entry->prev = LIST_POISON2;
57 }
58
59 static inline void list_move(struct list_head *list, struct list_head *head)
60 {
61         __list_del(list->prev, list->next);
62         list_add(list, head);
63 }
64
65 static inline void list_move_tail(struct list_head *list,
66                       struct list_head *head)
67 {
68         __list_del(list->prev, list->next);
69         list_add_tail(list, head);
70 }
71 #define list_entry(ptr, type, member) \
72     container_of(ptr, type, member)
73
74 #define list_first_entry(ptr, type, member) \
75     list_entry((ptr)->next, type, member)
76
77 #define list_for_each(pos, head) \
78     for (pos = (head)->next; pos != (head); pos = pos->next)

mylist.c如下所示:

 1 /**@brief 练习使用linux内核链表,功能包括:
 2  * 定义链表结构,创建链表、插入节点、删除节点、移动节点、遍历节点
 3  *
 4  *@auther Anker @date 2013-12-15
 5  **/
 6 #include <stdio.h>
 7 #include <inttypes.h>
 8 #include <stdlib.h>
 9 #include <errno.h>
10 #include "mylist.h"
11 //定义app_info链表结构
12 typedef struct application_info
13 {
14     uint32_t  app_id;
15     uint32_t  up_flow;
16     uint32_t  down_flow;
17     struct    list_head app_info_node;//链表节点
18 }app_info;
19
20
21 app_info* get_app_info(uint32_t app_id, uint32_t up_flow, uint32_t down_flow)
22 {
23     app_info *app = (app_info*)malloc(sizeof(app_info));
24     if (app == NULL)
25     {
26     fprintf(stderr, "Failed to malloc memory, errno:%u, reason:%s\n",
27         errno, strerror(errno));
28     return NULL;
29     }
30     app->app_id = app_id;
31     app->up_flow = up_flow;
32     app->down_flow = down_flow;
33     return app;
34 }
35 static void for_each_app(const struct list_head *head)
36 {
37     struct list_head *pos;
38     app_info *app;
39     //遍历链表
40     list_for_each(pos, head)
41     {
42     app = list_entry(pos, app_info, app_info_node);
43     printf("ap_id: %u\tup_flow: %u\tdown_flow: %u\n",
44         app->app_id, app->up_flow, app->down_flow);
45
46     }
47 }
48
49 void destroy_app_list(struct list_head *head)
50 {
51     struct list_head *pos = head->next;
52     struct list_head *tmp = NULL;
53     while (pos != head)
54     {
55     tmp = pos->next;
56     list_del(pos);
57     pos = tmp;
58     }
59 }
60
61
62 int main()
63 {
64     //创建一个app_info
65     app_info * app_info_list = (app_info*)malloc(sizeof(app_info));
66     app_info *app;
67     if (app_info_list == NULL)
68     {
69     fprintf(stderr, "Failed to malloc memory, errno:%u, reason:%s\n",
70         errno, strerror(errno));
71     return -1;
72     }
73     //初始化链表头部
74     struct list_head *head = &app_info_list->app_info_node;
75     init_list_head(head);
76     //插入三个app_info
77     app = get_app_info(1001, 100, 200);
78     list_add_tail(&app->app_info_node, head);
79     app = get_app_info(1002, 80, 100);
80     list_add_tail(&app->app_info_node, head);
81     app = get_app_info(1003, 90, 120);
82     list_add_tail(&app->app_info_node, head);
83     printf("After insert three app_info: \n");
84     for_each_app(head);
85     //将第一个节点移到末尾
86     printf("Move first node to tail:\n");
87     list_move_tail(head->next, head);
88     for_each_app(head);
89     //删除最后一个节点
90     printf("Delete the last node:\n");
91     list_del(head->prev);
92     for_each_app(head);
93     destroy_app_list(head);
94     free(app_info_list);
95     return 0;
96 }

测试结果如下所示:

时间: 2024-09-20 05:02:14

linux内核数据结构之链表的相关文章

linux内核数据结构之链表【转】

转自:http://www.cnblogs.com/Anker/archive/2013/12/15/3475643.html 1.前言 最近写代码需用到链表结构,正好公共库有关于链表的.第一眼看时,觉得有点新鲜,和我之前见到的链表结构不一样,只有前驱和后继指针,而没有数据域.后来看代码注释发现该代码来自linux内核,在linux源代码下include/Lish.h下.这个链表具备通用性,使用非常方便.只需要在结构定义一个链表结构就可以使用. 2.链表介绍 链表是非常基本的数据结构,根据链个数

linux内核数据结构之kfifo

1.前言 最近项目中用到一个环形缓冲区(ring buffer),代码是由linux内核的kfifo改过来的.缓冲区在文件系统中经常用到,通过缓冲区缓解cpu读写内存和读写磁盘的速度.例如一个进程A产生数据发给另外一个进程B,进程B需要对进程A传的数据进行处理并写入文件,如果B没有处理完,则A要延迟发送.为了保证进程A减少等待时间,可以在A和B之间采用一个缓冲区,A每次将数据存放在缓冲区中,B每次冲缓冲区中取.这是典型的生产者和消费者模型,缓冲区中数据满足FIFO特性,因此可以采用队列进行实现.

linux内核数据结构之kfifo【转】

转自:http://www.cnblogs.com/Anker/p/3481373.html 1.前言 最近项目中用到一个环形缓冲区(ring buffer),代码是由linux内核的kfifo改过来的.缓冲区在文件系统中经常用到,通过缓冲区缓解cpu读写内存和读写磁盘的速度.例如一个进程A产生数据发给另外一个进程B,进程B需要对进程A传的数据进行处理并写入文件,如果B没有处理完,则A要延迟发送.为了保证进程A减少等待时间,可以在A和B之间采用一个缓冲区,A每次将数据存放在缓冲区中,B每次冲缓冲

没有容量的容器——linux内核的链表(sina博客移入)

在看linux内核源代码的时候,经常在一些结构里看见struct list_head结构.找了一下源代码,在list.h中,有对这个结构的定义,这个就是linux内核中的链表结构. 仔细看看这个结构,就可以发现它和以前在讲数据结构的时候的链表有很大的差别--没有数据.list_head结构中仅仅包含了两个自己结构的指针,用来组建双向循环链表.最大的疑问就是,这个链表结构如何保存数据呢? 在list.h中,定义了list_entry宏.这个宏就是用来提取包含链表项的结构的指针.从list_entr

Linux 内核里的数据结构——双向链表

Linux 内核里的数据结构--双向链表 Linux 内核中自己实现了双向链表,可以在 include/linux/list.h 找到定义.我们将会首先从双向链表数据结构开始介绍内核里的数据结构.为什么?因为它在内核里使用的很广泛,你只需要在 free-electrons.com 检索一下就知道了. 首先让我们看一下在 include/linux/types.h 里的主结构体: struct list_head { struct list_head *next, *prev; }; 你可能注意到

简单理解linux内核的链表教程

在看linux内核源代码的时候,经常在一些结构里看见struct list_head结构.找了一下源代码,在list.h中,有对这个结构的定义,这个就是linux内核中的链表结构. 仔细看看这个结构,就可以发现它和以前在讲数据结构的时候的链表有很大的差别--没有数据.list_head结构中仅仅包含了两个自己结构的指针,用来组建双向循环链表.最大的疑问就是,这个链表结构如何保存数据呢? 在list.h中,定义了list_entry宏.这个宏就是用来提取包含链表项的结构的指针.从list_entr

【书摘】Linux内核编程

导读:本文节选自人民邮电出版社出版的<Linux内核编程>一书.本书的三位作者有多年的行业经验:Claudia Salzberg Rodriguez就职于IBM Linux技术中心,从事内核及相关编程工具的开发工作:Gordon Fischer为很多设备开发了Linux和UNIX设备驱动程序:Steve Smolski在半导体行业已经浸染了26年,开发过各种驱动程序和嵌入式系统.该书译者为陈莉君.贺炎和刘霞林. 作者独特的由表及里的讲解方法使得内核编程更易于理解:从用户空间到内核,把内核内在的

linux内核链表以及list_entry--linux内核数据结构(一)

传统的链表实现 之前我们前面提到的链表都是在我们原数据结构的基础上增加指针域next(或者prev),从而使各个节点能否链接在一起, 比如如下的结构信息 typedef struct fox { unsigned long tail_length; /* 尾巴长度, 以厘米为单位 */ unsigned long weight; /* 重量, 以千克为单位 */ bool is_fantastic; /* 这只狐狸奇妙么 */ }fox; 1 2 3 4 5 6 1 2 3 4 5 6 存储这个

基本数据结构和算法在Linux内核中使用

基本数据结构和算法在Linux内核中使用 gaufunga day ago 搬运工 Linux内核(源代码的链接在github). 1.链表.双向链表.无锁链表. 2.B+ 树,这是一些你无法在教科书上找到的说明. 一个相对简单的B+树的实现.我把它作为一个学习练习来帮助理解B+树是如何工作的.这同样也被证明是有用的. ... 一个在教科书中并不常见的技巧.最小的值在右侧而不是在左侧.所有在一个节点里用到的槽都在左侧,所有没有用到的槽包含了空值(NUL).大多数操作只简单地遍历所有的槽一次并在第