一个关于解决序列化问题的编程技巧

前一篇文章中我曾经说过,现在正在做一个小小的框架以实现采用统一的API实现对上下文(Context)信息的统一管理。这个框架同时支持Web和GUI应用,并支持跨线程传递和跨域传递(这里指在WCF服务调用中实现客户端到服务端隐式传递),以及对上下文项目(ContextItem)的读写控制。关键就在于后面两个特性的支持上面,出现一个小小的关于序列化的问题。解决方案只需要改动短短的一行代码,结果却让我折腾了老半天。

一、问题重现

为了重现我实际遇到的问题,我特意将问题简化,为此我写了一个简单的例子(你可以从这里下载)。在下面的代码片断中,我创建了一个名称为ContextItem的类型,代表一个需要维护的上下文项。由于需要在WCF服务调用实现自动传递,我将起定义成DataContract。ContextItem包含Key,Value和ReadOnly三个属性,不用说ReadOnly表示该ContextItem可以被修改。注意Value属性Set方法的定义——如果ReadOnly则抛出异常。

   1: [DataContract(Namespace = "http://www.artech.com")]
   2: public class ContextItem
   3: {
   4:     private object value = null;
   5:     [DataMember]
   6:     public string Key { get; private set; }
   7:     [DataMember]
   8:     public object Value
   9:     {
  10:         get
  11:         {
  12:             return this.value;
  13:         }
  14:         set
  15:         {
  16:             if (this.ReadOnly)
  17:             {
  18:                 throw new InvalidOperationException("Cannot change the value of readonly context item.");
  19:             }
  20:             this.value = value;
  21:         }
  22:     }
  23:     [DataMember]
  24:     public bool ReadOnly { get; set; }
  25:     public ContextItem(string key, object value)
  26:     {
  27:         if (string.IsNullOrEmpty(key))
  28:         {
  29:             throw new ArgumentNullException("key");
  30:         }
  31:         this.Key = key;
  32:         this.Value = value;
  33:     }
  34: }

为了演示序列化和反序列化,我写了如下两个静态的帮助方法。Serialize和Deserialize分别用于序列化和反序列化,前者将对象序列成成XML并保存到指定的文件中,后者则从文件读取XML并反序列化成相应的对象。

   1: public static T Deserialize<T>(string fileName)
   2: {
   3:     DataContractSerializer serializer = new DataContractSerializer(typeof(T));
   4:     using (XmlReader reader = new XmlTextReader(fileName))
   5:     {
   6:         return (T)serializer.ReadObject(reader);
   7:     }
   8: }
   9:  
  10: public static void Serialize<T>(T instance, string fileName)
  11: {
  12:     DataContractSerializer serializer = new DataContractSerializer(typeof(T));
  13:     using (XmlWriter writer = new XmlTextWriter(fileName, Encoding.UTF8))
  14:     {
  15:         serializer.WriteObject(writer, instance);
  16:     } 
  17:     Process.Start(fileName);
  18: }

我们的程序很简单。从如下的代码片断中,我们先创建一个ContextItem对象,然后将ReadOnly属性设置成true。然后调用Serialize方法将对象序列化成XML并保存在一个名称为context.xml的文件中。然后调用Deserialize方法,读取该文件进行反序列化。

   1: static void Main(string[] args)
   2: {
   3:     var contextItem1 = new ContextItem("__userId", "Foo");
   4:     contextItem1.ReadOnly = true;
   5:     Serialize<ContextItem>(contextItem1, "context.xml");
   6:     var contextItem2 = Deserialize<ContextItem>("context.xml");           
   7: }

序列化操作能够正常执行,但当程序执行到Deserialize的时候抛出如下一个InvalidOperationException异常。

二、问题分析

从上面给出的截图,我们不难看出,异常是在给ContextItem对象的Value属性赋值的时候抛出的。如果对DataContractSerializer序列化器的序列化/反序列化规则的有所了解的话,应该知道:对于数据契约(DataContract)基于属性(Property)的数据成员(DataMember),序列器在反序列化的时候是通过调用Set方法对其进行初始化的。在本例中,由于ReadOnly是True,在对Value进行反序列化的时候必然会调用Set方法。但是,只读的ContextItem却不能对其赋值,所以异常抛出。

那么,如何来解决这个问题呢?我最初的想法是这样:在序列化的时候将ReadOnly属性设置成False,然后添加另一个属性专门用于保存真实的值。在进行反序列的时候,由于ReadOnly为false,所以不会出现异常。当反序列化完成之后,在将ReadOnly的初始值赋上。虽然上述的方案能够解决问题,但是为此对ContextItem添加一个只在序列化和反序列化的过程中在有用的属性,总觉得很丑陋。

我们不妨换一种思路:异常产生于对Value属性凡序列化时发现ReadOnly非True的情况。那么怎样采用避免这种情况的发生呢?如果Value属性先于ReadOnly属性被序列化,那么ReadOnly的初始值就是False,这个问题不就解决了吗?这就是我们的第一个解决方案。

三、解决方案一:通过控制属性反序列化顺序

那么,如果控制那么属性先被反序列化,那么后被序列化呢?这就是要了解DataContractSerializer序列化器的序列化和发序列化规则了。在默认的情况下,DataContractSerializer是按照数据成员的名称的顺序进行序列化的。这可以从生成出来的XML的结构看出来。而XML元素的先后顺序决定了反序列化的顺序。

   1: <ContextItem xmlns:i="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.artech.com">
   2:     <Key>__userId</Key>
   3:     <ReadOnly>true</ReadOnly>
   4:     <Value xmlns:d2p1="http://www.w3.org/2001/XMLSchema" i:type="d2p1:string">Foo</Value>
   5: </ContextItem>

在上面的例子中,ContextItem的ReadOnly排在Value的前面,会先被序列化。那么,是不是我们要更新Value或者ReadOnly的数据成员(DataMember,不是属性名称)呢?这肯定不是我们想要的解决方案。在SOA的世界中,DataMember是契约的一部分,往往是不容许更改的。

如果在不更改数据成员名称的前提下让属性Value先于ReadOnly被序列化,需要用到DataContractSerializer另一条反序列化规则:我们可以通过DataMemberAttribute特性的Order属性控制序列化后的属性在XML元素列表中的位置。

为此,我们有了答案,我们只需要将ContextItem稍加改动就可以了。在如下的代码中,在为Value和ReadOnly两个属性应用DataMemberAttribute的时候,将Order属性分别设置成1和2,这样就能使ContextItem对象在被序列化的时候,Value和ReadOnly属性对应的XML元素将永远会有前后之分。这里还需要注意的是,在Value属性的Set方法中,判断是否只读,采用的不是ReadOnly属性,而是对应的readonly字段。这一点非常重要,如果调用ReadOnly属性将会迫使该属性被反序列化。

   1: [DataContract(Namespace = "http://www.artech.com")]
   2: public class ContextItem
   3: {
   4:     private object value = null;
   5:     private bool readOnly;
   6:     [DataMember]
   7:     public string Key { get; private set; }
   8:  
   9:     [DataMember(Order = 1)]
  10:     public object Value
  11:     {
  12:         get
  13:         {
  14:             return this.value;
  15:         }
  16:         set
  17:         {
  18:             if (this.readOnly)
  19:             {
  20:                 throw new InvalidOperationException("Cannot change the value of readonly context item.");
  21:             }
  22:             this.value = value;
  23:         }
  24:     }
  25:     [DataMember(Order =2)]
  26:     public bool ReadOnly
  27:     {
  28:         get
  29:         {
  30:             return readOnly;
  31:         }
  32:         set
  33:         {
  34:             readOnly = value;
  35:         }
  36:     }
  37:     //Others
  38: }

有兴趣的读者可以亲自试试看,如果我们进行了如上的更改,前面的程序就能正常运行了。到这里,有的读者可以要问了,你不是说仅仅有一行代码的变化吗,我看上面改动的不止一行嘛。没有错,我们完全可以作更少的更改来解决问题。

四、解决方案二:将数据成员定义在字段上而不是属性上

我们再换一种思维,之所以出现异常是在反序列化的时候调用Value属性的Set方法所致。如果在反序列化的时候不调用这个方法不就得了吗?那么,如何才能避免对Value属性的Set方法的调用呢?方法很简单,那就是将数据成员定义在字段上,而不是属性上。基于属性的数据成员在反序列化的时候不得不通过调用Set方法对数据项进行初始化,而基于字段的数据成员在反序列化的时候只需要直接对其复制就可以了。

基于这样的思路,我们对原来的ContextItem进行简单的改动——将DataMemberAttribute特性从Value属性移到value字段上。需要注意的,为了符合于原来的Schema,需要将DataMemberAttribute特性的Name属性设置成“Value”。

   1: [DataContract(Namespace = "http://www.artech.com")]
   2: public class ContextItem
   3: {
   4:     [DataMember]
   5:     public string Key { get; private set; }
   6:  
   7:     [DataMember(Name = "Value")]
   8:     private object value = null;
   9:     public object Value
  10:     {
  11:         get
  12:         {
  13:             return this.value;
  14:         }
  15:         set
  16:         {
  17:             if (this.ReadOnly)
  18:             {
  19:                 throw new InvalidOperationException("Cannot change the value of readonly context item.");
  20:             }
  21:             this.value = value;
  22:         }
  23:     }
  24:     [DataMember]
  25:     public bool ReadOnly { get; set; }     
  26:      //Others
  27:     }
  28: }

总结

虽然这仅仅是一个很小的问题,解决的方案看起来也是如此的简单。但是,这并不意味着这是一个可以被忽视的问题,背后隐藏对DataMemberAttribute序列化的序列化规则的理解。

作者:蒋金楠
微信公众账号:大内老A
微博:www.weibo.com/artech
如果你想及时得到个人撰写文章以及著作的消息推送,或者想看看个人推荐的技术资料,可以扫描左边二维码(或者长按识别二维码)关注个人公众号(原来公众帐号蒋金楠的自媒体将会停用)。
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

原文链接

时间: 2024-10-02 11:20:27

一个关于解决序列化问题的编程技巧的相关文章

WCF技术剖析之三十:一个很有用的WCF调用编程技巧[下篇]

在<上篇>中,我通过使用Delegate的方式解决了服务调用过程中的异常处理以及对服务代理的关闭.对于<WCF技术剖析(卷1)>的读者,应该会知道在第7章中我通过类似于AOP的方式解决了相似的问题,现在我们来讨论这个解决方案. 通过<服务代理不能得到及时关闭会有什么后果?>的介绍,我们知道了及时关闭服务代理的重要意义,并且给出了正确的编程方式.如果严格按照上面的编程方式,就意味着对于每一个服务调用,都要使用相同的代码进行异常处理和关闭或中断服务代理对象.按照我个人的观点

WCF技术剖析之三十:一个很有用的WCF调用编程技巧[上篇]

在进行基于会话信道的WCF服务调用中,由于受到并发信道数量的限制,我们需要及时的关闭信道:当遇到某些异常,我们需要强行中止(Abort)信道,相关的原理,可以参考我的文章<服务代理不能得到及时关闭会有什么后果?>.在真正的企业级开发中,正如我们一般不会让开发人员手工控制数据库连接的开启和关闭一样,我们一般也不会让开发人员手工去创建.开启.中止和关闭信道,这些工作是框架应该完成的操作.这篇文章,我们就来介绍如果通过一些编程技巧,让开发者能够无视"信道"的存在,像调用一个普通对

PHP编程技巧:看实例学正则表达式

编程|技巧|正则     首先,让我们看看两个特别的字符:'^' 和 '$' 他们是分别用来匹配字符串的开始和结束,一下分别举例说明: "^The": 匹配以 "The"开头的字符串; "of despair$": 匹配以 "of despair" 结尾的字符串; "^abc$": 匹配以abc开头和以abc结尾的字符串,实际上是只有abc与之匹配: "notice": 匹配包含noti

介绍9点个人认为比较重要的javascript 编程技巧

  介绍9点个人认为比较重要的javascript 编程技巧        1.巧用判断: 在js中,NaN,undefined,Null,0,"" 在转换为bool的时候,是false,所以,可以这样写. 代码如下: if(!obj) {} 表示一个对象如果为false的时候所做的事情,因为如果obj为以上任何一个,那么就是false,!false即是true,这样,就不需要 if(obj==null || obj == NaN ....). 2.巧用运算符: 有一个很经典的技巧,得

Linux GCC 64位编程技巧

                                 linux GCC 64位编程技巧 64位系统的优势? 既然要采用64位系统,首先要知道64位系统的优势所在.对于技术人员来说,完全没有必要去看那些厂家拿出的厚厚的说明书.或者某个研究机构抛出的一堆的数字,64位系统的优势总结起来很简单:内存大.速度快! 内存大 与32位系统相比,64位系统的地址空间大大增大,达到了18PB,18PB究竟是多大呢?说出来有点吓人:4G内存的40亿倍!这么大的空间,不要说内存了,就是整个磁盘的数据都

技海无涯:正则表达式相关的知识和技术(3)——编程技巧:堆栈的本质探讨

编程技巧--堆栈的本质探讨 如果我要说本章的编程技巧就是为了介绍堆栈的使用技巧,你可能会笑掉大牙:哈哈,堆栈,这不是小儿科吗?!! 是的,每个编程的人都知道的堆栈,而且说起堆栈,大家肯定会马上想到"后进先出(LIFO)",这是教科书关于堆栈本质的解释. 没错,堆栈的本质是LIFO,但绝不是简单的先进后出就完了,结合各种各样的压栈出栈操作,堆栈可以实现很强大的功能.下面就以正则表达式涉及的两个例子来说明堆栈的妙用. 1) 通过堆栈来完成正则表达式->NFA. 在介绍表达式的时候提到

编程技巧

编程技巧 java C++ C++ 比如在判断两个浮点数 a 和 b 是否相等时,不要用 a==b,应该判断二者之差的绝对值 fabs(a-b) 是否小于某个阈值,例如 1e-9. 判断一个整数是否是为奇数,用 x % 2 != 0,不要用 x % 2 == 1,因为 x 可能是负 数.用 char 的值作为数组下标(例如,统计字符串中每个字符出现的次数),要考虑到 char 可能是负数.有的人考虑到了,先强制转型为 unsigned int 再用作下标,这仍然 是错的.正确的做法是,先强制转型

介绍Python中的一些高级编程技巧_python

 正文: 本文展示一些高级的Python设计结构和它们的使用方法.在日常工作中,你可以根据需要选择合适的数据结构,例如对快速查找性的要求.对数据一致性的要求或是对索引的要求等,同时也可以将各种数据结构合适地结合在一起,从而生成具有逻辑性并易于理解的数据模型.Python的数据结构从句法上来看非常直观,并且提供了大量的可选操作.这篇指南尝试将大部分常用的数据结构知识放到一起,并且提供对其最佳用法的探讨.推导式(Comprehensions) 如果你已经使用了很长时间的Python,那么你至少应该听

Matlab.NET混合编程技巧之——找出Matlab内置函数

原文:[原创]Matlab.NET混合编程技巧之--找出Matlab内置函数 Matlab与.NET的混合编程,掌握了基本过程,加上一定的开发经验和算法基础,肯定不难.反之,有时候一个小错误,可能抓破脑袋,加班几个晚上,调试才能解决.同样,由于Matlab.NET混编的特殊性,加上MathWorks的原因,英文文档和没有披露一些详细的细节(甚至不允许反编译MWArray.dll,呵呵,它不允许,不代表你不会哦).经过很多项目,和大量的实验,也发现了一些小技巧和小秘密,今天就分享其中一个,先做一个