B. Kolya and Tanya
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output
Kolya loves putting gnomes at the circle table and giving them coins, and Tanya loves studying triplets of gnomes, sitting in the vertexes of an equilateral triangle.
More formally, there are 3n gnomes sitting in a circle. Each gnome can have from 1 to 3 coins.
Let's number the places in the order they occur in the circle by numbers from 0 to 3n - 1,
let the gnome sitting on the i-th place have ai coins.
If there is an integer i (0 ≤ i < n)
such that ai + ai + n + ai + 2n ≠ 6,
then Tanya is satisfied.
Count the number of ways to choose ai so
that Tanya is satisfied. As there can be many ways of distributing coins, print the remainder of this number modulo 109 + 7.
Two ways, a and b,
are considered distinct if there is index i (0 ≤ i < 3n),
such that ai ≠ bi (that
is, some gnome got different number of coins in these two ways).
Input
A single line contains number n (1 ≤ n ≤ 105)
— the number of the gnomes divided by three.
Output
Print a single number — the remainder of the number of variants of distributing coins that satisfy Tanya modulo 109 + 7.
Sample test(s)
input
1
output
20
input
2
output
680
Note
20 ways for n = 1 (gnome
with index 0 sits on the top of the triangle, gnome 1 on
the right vertex, gnome 2 on the left vertex):
题目大意:
给一个n,表示一张桌子坐了3*n个人
你要给每一个人发钱,可以发1,2,3块,第i个人的钱是ai (i从0开始)
有一个要求:. ai + ai + n + ai + 2n ≠ 6,
then Tanya is satisfied.
也就是只要有 一组that ai + ai + n + ai + 2n ≠ 6,
.就可以了
解题思路:
对于n=1的时候,我们可以发现这个三角形有 20种情况符合条件,7种不符合条件;
我们可以这么想,反正只需要至少有一种情况满足就行,所以我们就从它的对立事件想,
就是全部的数量减去它一个也不满足的数量也就是
ret == 27 ^ n -- 7 ^ n
只要推出这个来,只需要进行一下快速幂就ok了;
上代码:
#include <iostream> #include <cstdio> #include <cstring> #include <cstdlib> #include <cmath> #include <vector> #include <queue> #include <algorithm> #include <set> using namespace std; #define MM(a) memset(a,0,sizeof(a)) #define MM1(a) memset(a, false, sizeof(a)) typedef long long LL; typedef unsigned long long ULL; const int maxn = 1e3+5; const int mod = 1e9 + 7; const double eps = 1e-7; const double pi = 3.1415926; LL quick_mod(LL a, LL b) { LL ans = 1; while(b) { if(b&1) ans = (ans*a)%mod; b>>=1; a = (a*a)%mod; } return ans; } int main() { int n; cin>>n; LL ans = quick_mod(27, n); LL ret = quick_mod(7, n); ///cout<<ans<<" " <<ret<<endl; ret = (ans%mod - ret%mod +mod)%mod; cout<<ret<<endl; }