(zhuan) Where can I start with Deep Learning?

Where can I start with Deep Learning?

By Rotek Song, Deep Reinforcement Learning/Robotics/Computer Vision/iOS | 03/01/2017

 

 

 

If you are a newcomer to the Deep Learning area, the first question you may have is “Which paper should I start reading from?”

Here is a reading roadmap of Deep Learning papers!

The roadmap is constructed in accordance with the following four guidelines:

  • From outline to detail
  • From old to state-of-the-art
  • from generic to specific areas
  • focus on state-of-the-art

You will find many papers that are quite new but really worth reading.

I would continue adding papers to this roadmap.


1 Deep Learning History and Basics

1.0 Book

[0] Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. “Deep learning.” An MIT Press book. (2015). [pdf](Deep Learning Bible, you can read this book while reading following papers.) 

1.1 Survey

[1] LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. “Deep learning.” Nature 521.7553 (2015): 436-444. [pdf](Three Giants’ Survey) 

1.2 Deep Belief Network(DBN)(Milestone of Deep Learning Eve)

[2] Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. “A fast learning algorithm for deep belief nets.” Neural computation 18.7 (2006): 1527-1554. [pdf](Deep Learning Eve) 

[3] Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. “Reducing the dimensionality of data with neural networks.” Science 313.5786 (2006): 504-507. [pdf] (Milestone, Show the promise of deep learning) 

1.3 ImageNet Evolution(Deep Learning broke out from here)

[4] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. “Imagenet classification with deep convolutional neural networks.” Advances in neural information processing systems. 2012. [pdf] (AlexNet, Deep Learning Breakthrough)

[5] Simonyan, Karen, and Andrew Zisserman. “Very deep convolutional networks for large-scale image recognition.” arXiv preprint arXiv:1409.1556 (2014). [pdf] (VGGNet,Neural Networks become very deep!) 

[6] Szegedy, Christian, et al. “Going deeper with convolutions.” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015. [pdf] (GoogLeNet) 

[7] He, Kaiming, et al. “Deep residual learning for image recognition.” arXiv preprint arXiv:1512.03385 (2015). [pdf](ResNet,Very very deep networks, CVPR best paper) 

1.4 Speech Recognition Evolution

[8] Hinton, Geoffrey, et al. “Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups.” IEEE Signal Processing Magazine 29.6 (2012): 82-97. [pdf](Breakthrough in speech recognition)

[9] Graves, Alex, Abdel-rahman Mohamed, and Geoffrey Hinton. “Speech recognition with deep recurrent neural networks.” 2013 IEEE international conference on acoustics, speech and signal processing. IEEE, 2013. [pdf](RNN)

[10] Graves, Alex, and Navdeep Jaitly. “Towards End-To-End Speech Recognition with Recurrent Neural Networks.” ICML. Vol. 14. 2014. [pdf]

[11] Sak, Haşim, et al. “Fast and accurate recurrent neural network acoustic models for speech recognition.” arXiv preprint arXiv:1507.06947 (2015). [pdf] (Google Speech Recognition System) 

[12] Amodei, Dario, et al. “Deep speech 2: End-to-end speech recognition in english and mandarin.” arXiv preprint arXiv:1512.02595 (2015). [pdf] (Baidu Speech Recognition System) 

[13] W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu, G. Zweig “Achieving Human Parity in Conversational Speech Recognition.” arXiv preprint arXiv:1610.05256 (2016). [pdf] (State-of-the-art in speech recognition, Microsoft) 

After reading above papers, you will have a basic understanding of the Deep Learning history, the basic architectures of Deep Learning model(including CNN, RNN, LSTM) and how deep learning can be applied to image and speech recognition issues. The following papers will take you in-depth understanding of the Deep Learning method, Deep Learning in different areas of application and the frontiers. I suggest that you can choose the following papers based on your interests and research direction.

2 Deep Learning Method

2.1 Model

[14] Hinton, Geoffrey E., et al. “Improving neural networks by preventing co-adaptation of feature detectors.” arXiv preprint arXiv:1207.0580 (2012). [pdf] (Dropout) 

[15] Srivastava, Nitish, et al. “Dropout: a simple way to prevent neural networks from overfitting.” Journal of Machine Learning Research 15.1 (2014): 1929-1958. [pdf] 

[16] Ioffe, Sergey, and Christian Szegedy. “Batch normalization: Accelerating deep network training by reducing internal covariate shift.” arXiv preprint arXiv:1502.03167 (2015). [pdf] (An outstanding Work in 2015) 

[17] Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. “Layer normalization.” arXiv preprint arXiv:1607.06450 (2016). [pdf] (Update of Batch Normalization) 

[18] Courbariaux, Matthieu, et al. “Binarized Neural Networks: Training Neural Networks with Weights and Activations Constrained to+ 1 or−1.” [pdf] (New Model,Fast) 

[19] Jaderberg, Max, et al. “Decoupled neural interfaces using synthetic gradients.” arXiv preprint arXiv:1608.05343 (2016). [pdf] (Innovation of Training Method,Amazing Work) 

[20] Chen, Tianqi, Ian Goodfellow, and Jonathon Shlens. “Net2net: Accelerating learning via knowledge transfer.” arXiv preprint arXiv:1511.05641 (2015). [pdf] (Modify previously trained network to reduce training epochs)

[21] Wei, Tao, et al. “Network Morphism.” arXiv preprint arXiv:1603.01670 (2016). [pdf] (Modify previously trained network to reduce training epochs) 

2.2 Optimization

[22] Sutskever, Ilya, et al. “On the importance of initialization and momentum in deep learning.” ICML (3) 28 (2013): 1139-1147. [pdf] (Momentum optimizer) 

[23] Kingma, Diederik, and Jimmy Ba. “Adam: A method for stochastic optimization.” arXiv preprint arXiv:1412.6980 (2014). [pdf] (Maybe used most often currently) 

[24] Andrychowicz, Marcin, et al. “Learning to learn by gradient descent by gradient descent.” arXiv preprint arXiv:1606.04474 (2016). [pdf] (Neural Optimizer,Amazing Work) 

[25] Han, Song, Huizi Mao, and William J. Dally. “Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding.” CoRR, abs/1510.00149 2 (2015). [pdf] (ICLR best paper, new direction to make NN running fast,DeePhi Tech Startup) 

[26] Iandola, Forrest N., et al. “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 1MB model size.” arXiv preprint arXiv:1602.07360 (2016). [pdf] (Also a new direction to optimize NN,DeePhi Tech Startup)

2.3 Unsupervised Learning / Deep Generative Model

[27] Le, Quoc V. “Building high-level features using large scale unsupervised learning.” 2013 IEEE international conference on acoustics, speech and signal processing. IEEE, 2013. [pdf] (Milestone, Andrew Ng, Google Brain Project, Cat) 

[28] Kingma, Diederik P., and Max Welling. “Auto-encoding variational bayes.” arXiv preprint arXiv:1312.6114 (2013). [pdf] (VAE) 

[29] Goodfellow, Ian, et al. “Generative adversarial nets.” Advances in Neural Information Processing Systems. 2014. [pdf] (GAN,super cool idea) 

[30] Radford, Alec, Luke Metz, and Soumith Chintala. “Unsupervised representation learning with deep convolutional generative adversarial networks.” arXiv preprint arXiv:1511.06434 (2015). [pdf] (DCGAN) 

[31] Gregor, Karol, et al. “DRAW: A recurrent neural network for image generation.” arXiv preprint arXiv:1502.04623 (2015). [pdf] (VAE with attention, outstanding work) 

[32] Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. “Pixel recurrent neural networks.” arXiv preprint arXiv:1601.06759 (2016). [pdf] (PixelRNN) 

[33] Oord, Aaron van den, et al. “Conditional image generation with PixelCNN decoders.” arXiv preprint arXiv:1606.05328 (2016). [pdf] (PixelCNN) 

2.4 RNN / Sequence-to-Sequence Model

[34] Graves, Alex. “Generating sequences with recurrent neural networks.” arXiv preprint arXiv:1308.0850 (2013). [pdf] (LSTM, very nice generating result, show the power of RNN) 

[35] Cho, Kyunghyun, et al. “Learning phrase representations using RNN encoder-decoder for statistical machine translation.” arXiv preprint arXiv:1406.1078 (2014). [pdf] (First Seq-to-Seq Paper) 

[36] Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. “Sequence to sequence learning with neural networks.” Advances in neural information processing systems. 2014. [pdf] (Outstanding Work) 

[37] Bahdanau, Dzmitry, KyungHyun Cho, and Yoshua Bengio. “Neural Machine Translation by Jointly Learning to Align and Translate.” arXiv preprint arXiv:1409.0473 (2014). [pdf] 

[38] Vinyals, Oriol, and Quoc Le. “A neural conversational model.” arXiv preprint arXiv:1506.05869 (2015). [pdf](Seq-to-Seq on Chatbot) 

2.5 Neural Turing Machine

[39] Graves, Alex, Greg Wayne, and Ivo Danihelka. “Neural turing machines.” arXiv preprint arXiv:1410.5401 (2014). [pdf] (Basic Prototype of Future Computer) 

[40] Zaremba, Wojciech, and Ilya Sutskever. “Reinforcement learning neural Turing machines.” arXiv preprint arXiv:1505.00521 362 (2015). [pdf] 

[41] Weston, Jason, Sumit Chopra, and Antoine Bordes. “Memory networks.” arXiv preprint arXiv:1410.3916 (2014). [pdf] 

[42] Sukhbaatar, Sainbayar, Jason Weston, and Rob Fergus. “End-to-end memory networks.” Advances in neural information processing systems. 2015. [pdf] 

[43] Vinyals, Oriol, Meire Fortunato, and Navdeep Jaitly. “Pointer networks.” Advances in Neural Information Processing Systems. 2015. [pdf] 

[44] Graves, Alex, et al. “Hybrid computing using a neural network with dynamic external memory.” Nature (2016). [pdf] (Milestone,combine above papers’ ideas) 

2.6 Deep Reinforcement Learning

[45] Mnih, Volodymyr, et al. “Playing atari with deep reinforcement learning.” arXiv preprint arXiv:1312.5602 (2013). [pdf]) (First Paper named deep reinforcement learning) 

[46] Mnih, Volodymyr, et al. “Human-level control through deep reinforcement learning.” Nature 518.7540 (2015): 529-533. [pdf] (Milestone) 

[47] Wang, Ziyu, Nando de Freitas, and Marc Lanctot. “Dueling network architectures for deep reinforcement learning.” arXiv preprint arXiv:1511.06581 (2015). [pdf] (ICLR best paper,great idea) 

[48] Mnih, Volodymyr, et al. “Asynchronous methods for deep reinforcement learning.” arXiv preprint arXiv:1602.01783 (2016). [pdf] (State-of-the-art method) 

[49] Lillicrap, Timothy P., et al. “Continuous control with deep reinforcement learning.” arXiv preprint arXiv:1509.02971 (2015). [pdf] (DDPG) 

[50] Gu, Shixiang, et al. “Continuous Deep Q-Learning with Model-based Acceleration.” arXiv preprint arXiv:1603.00748 (2016). [pdf] (NAF) 

[51] Schulman, John, et al. “Trust region policy optimization.” CoRR, abs/1502.05477 (2015). [pdf] (TRPO)

[52] Silver, David, et al. “Mastering the game of Go with deep neural networks and tree search.” Nature 529.7587 (2016): 484-489. [pdf] (AlphaGo) 

2.7 Deep Transfer Learning / Lifelong Learning / especially for RL

[53] Bengio, Yoshua. “Deep Learning of Representations for Unsupervised and Transfer Learning.” ICML Unsupervised and Transfer Learning 27 (2012): 17-36. [pdf] (A Tutorial) 

[54] Silver, Daniel L., Qiang Yang, and Lianghao Li. “Lifelong Machine Learning Systems: Beyond Learning Algorithms.” AAAI Spring Symposium: Lifelong Machine Learning. 2013. [pdf] (A brief discussion about lifelong learning) 

[55] Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. “Distilling the knowledge in a neural network.” arXiv preprint arXiv:1503.02531 (2015). [pdf] (Godfather’s Work) 

[56] Rusu, Andrei A., et al. “Policy distillation.” arXiv preprint arXiv:1511.06295 (2015). [pdf] (RL domain) 

[57] Parisotto, Emilio, Jimmy Lei Ba, and Ruslan Salakhutdinov. “Actor-mimic: Deep multitask and transfer reinforcement learning.” arXiv preprint arXiv:1511.06342 (2015). [pdf] (RL domain) 

[58] Rusu, Andrei A., et al. “Progressive neural networks.” arXiv preprint arXiv:1606.04671 (2016). [pdf](Outstanding Work, A novel idea) 

2.8 One Shot Deep Learning

[59] Lake, Brenden M., Ruslan Salakhutdinov, and Joshua B. Tenenbaum. “Human-level concept learning through probabilistic program induction.” Science 350.6266 (2015): 1332-1338. [pdf] (No Deep Learning,but worth reading) 

[60] Koch, Gregory, Richard Zemel, and Ruslan Salakhutdinov. “Siamese Neural Networks for One-shot Image Recognition.”(2015) [pdf] 

[61] Santoro, Adam, et al. “One-shot Learning with Memory-Augmented Neural Networks.” arXiv preprint arXiv:1605.06065 (2016). [pdf] (A basic step to one shot learning) 

[62] Vinyals, Oriol, et al. “Matching Networks for One Shot Learning.” arXiv preprint arXiv:1606.04080 (2016). [pdf]

[63] Hariharan, Bharath, and Ross Girshick. “Low-shot visual object recognition.” arXiv preprint arXiv:1606.02819 (2016). [pdf] (A step to large data) 

3 Applications

3.1 NLP(Natural Language Processing)

[1] Antoine Bordes, et al. “Joint Learning of Words and Meaning Representations for Open-Text Semantic Parsing.” AISTATS(2012) [pdf] 

[2] Mikolov, et al. “Distributed representations of words and phrases and their compositionality.” ANIPS(2013): 3111-3119 [pdf] (word2vec) 

[3] Sutskever, et al. ““Sequence to sequence learning with neural networks.” ANIPS(2014) [pdf] 

[4] Ankit Kumar, et al. ““Ask Me Anything: Dynamic Memory Networks for Natural Language Processing.” arXiv preprint arXiv:1506.07285(2015) [pdf] 

[5] Yoon Kim, et al. “Character-Aware Neural Language Models.” NIPS(2015) arXiv preprint arXiv:1508.06615(2015) [pdf] 

[6] Jason Weston, et al. “Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks.” arXiv preprint arXiv:1502.05698(2015) [pdf] (bAbI tasks) 

[7] Karl Moritz Hermann, et al. “Teaching Machines to Read and Comprehend.” arXiv preprint arXiv:1506.03340(2015) [pdf] (CNN/DailyMail cloze style questions) 

[8] Alexis Conneau, et al. “Very Deep Convolutional Networks for Natural Language Processing.” arXiv preprint arXiv:1606.01781(2016) [pdf] (state-of-the-art in text classification) 

[9] Armand Joulin, et al. “Bag of Tricks for Efficient Text Classification.” arXiv preprint arXiv:1607.01759(2016) [pdf](slightly worse than state-of-the-art, but a lot faster) 

3.2 Object Detection

[1] Szegedy, Christian, Alexander Toshev, and Dumitru Erhan. “Deep neural networks for object detection.” Advances in Neural Information Processing Systems. 2013. [pdf] 

[2] Girshick, Ross, et al. “Rich feature hierarchies for accurate object detection and semantic segmentation.” Proceedings of the IEEE conference on computer vision and pattern recognition. 2014. [pdf](RCNN) 

[3] He, Kaiming, et al. “Spatial pyramid pooling in deep convolutional networks for visual recognition.” European Conference on Computer Vision. Springer International Publishing, 2014. [pdf] (SPPNet) 

[4] Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE International Conference on Computer Vision. 2015. [pdf]

[5] Ren, Shaoqing, et al. “Faster R-CNN: Towards real-time object detection with region proposal networks.” Advances in neural information processing systems. 2015. [pdf] 

[6] Redmon, Joseph, et al. “You only look once: Unified, real-time object detection.” arXiv preprint arXiv:1506.02640 (2015). [pdf] (YOLO,Oustanding Work, really practical) 

[7] Liu, Wei, et al. “SSD: Single Shot MultiBox Detector.” arXiv preprint arXiv:1512.02325 (2015). [pdf] 

3.3 Visual Tracking

[1] Wang, Naiyan, and Dit-Yan Yeung. “Learning a deep compact image representation for visual tracking.” Advances in neural information processing systems. 2013. [pdf] (First Paper to do visual tracking using Deep Learning,DLT Tracker) 

[2] Wang, Naiyan, et al. “Transferring rich feature hierarchies for robust visual tracking.” arXiv preprint arXiv:1501.04587 (2015). [pdf] (SO-DLT) 

[3] Wang, Lijun, et al. “Visual tracking with fully convolutional networks.” Proceedings of the IEEE International Conference on Computer Vision. 2015. [pdf] (FCNT) 

[4] Held, David, Sebastian Thrun, and Silvio Savarese. “Learning to Track at 100 FPS with Deep Regression Networks.” arXiv preprint arXiv:1604.01802 (2016). [pdf] (GOTURN,Really fast as a deep learning method,but still far behind un-deep-learning methods) 

[5] Bertinetto, Luca, et al. “Fully-Convolutional Siamese Networks for Object Tracking.” arXiv preprint arXiv:1606.09549 (2016). [pdf] (SiameseFC,New state-of-the-art for real-time object tracking) 

[6] Martin Danelljan, Andreas Robinson, Fahad Khan, Michael Felsberg. “Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking.” ECCV (2016) [pdf] (C-COT) 

[7] Nam, Hyeonseob, Mooyeol Baek, and Bohyung Han. “Modeling and Propagating CNNs in a Tree Structure for Visual Tracking.” arXiv preprint arXiv:1608.07242 (2016). [pdf] (VOT2016 Winner,TCNN) 

3.4 Image Caption

[1] Farhadi,Ali,etal. “Every picture tells a story: Generating sentences from images“. In Computer VisionECCV 2010. Springer Berlin Heidelberg:15-29, 2010. [pdf] 

[2] Kulkarni, Girish, et al. “Baby talk: Understanding and generating image descriptions“. In Proceedings of the 24th CVPR, 2011. [pdf]

[3] Vinyals, Oriol, et al. “Show and tell: A neural image caption generator“. In arXiv preprint arXiv:1411.4555, 2014. [pdf]

[4] Donahue, Jeff, et al. “Long-term recurrent convolutional networks for visual recognition and description“. In arXiv preprint arXiv:1411.4389 ,2014. [pdf]

[5] Karpathy, Andrej, and Li Fei-Fei. “Deep visual-semantic alignments for generating image descriptions“. In arXiv preprint arXiv:1412.2306, 2014. [pdf]

[6] Karpathy, Andrej, Armand Joulin, and Fei Fei F. Li. “Deep fragment embeddings for bidirectional image sentence mapping“. In Advances in neural information processing systems, 2014. [pdf]

[7] Fang, Hao, et al. “From captions to visual concepts and back“. In arXiv preprint arXiv:1411.4952, 2014. [pdf]

[8] Chen, Xinlei, and C. Lawrence Zitnick. “Learning a recurrent visual representation for image caption generation“. In arXiv preprint arXiv:1411.5654, 2014. [pdf]

[9] Mao, Junhua, et al. “Deep captioning with multimodal recurrent neural networks (m-rnn)“. In arXiv preprint arXiv:1412.6632, 2014. [pdf]

[10] Xu, Kelvin, et al. “Show, attend and tell: Neural image caption generation with visual attention“. In arXiv preprint arXiv:1502.03044, 2015. [pdf]

3.5 Machine Translation

Some milestone papers are listed in RNN / Seq-to-Seq topic.

[1] Luong, Minh-Thang, et al. “Addressing the rare word problem in neural machine translation.” arXiv preprint arXiv:1410.8206 (2014). [pdf] 

[2] Sennrich, et al. “Neural Machine Translation of Rare Words with Subword Units“. In arXiv preprint arXiv:1508.07909, 2015. [pdf]

[3] Luong, Minh-Thang, Hieu Pham, and Christopher D. Manning. “Effective approaches to attention-based neural machine translation.” arXiv preprint arXiv:1508.04025 (2015). [pdf] 

[4] Chung, et al. “A Character-Level Decoder without Explicit Segmentation for Neural Machine Translation“. In arXiv preprint arXiv:1603.06147, 2016. [pdf]

[5] Lee, et al. “Fully Character-Level Neural Machine Translation without Explicit Segmentation“. In arXiv preprint arXiv:1610.03017, 2016. [pdf]

[6] Wu, Schuster, Chen, Le, et al. “Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation“. In arXiv preprint arXiv:1609.08144v2, 2016. [pdf] (Milestone) 

3.6 Robotics

[1] Koutník, Jan, et al. “Evolving large-scale neural networks for vision-based reinforcement learning.” Proceedings of the 15th annual conference on Genetic and evolutionary computation. ACM, 2013. [pdf] 

[2] Levine, Sergey, et al. “End-to-end training of deep visuomotor policies.” Journal of Machine Learning Research 17.39 (2016): 1-40. [pdf] 

[3] Pinto, Lerrel, and Abhinav Gupta. “Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot hours.” arXiv preprint arXiv:1509.06825 (2015). [pdf] 

[4] Levine, Sergey, et al. “Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection.” arXiv preprint arXiv:1603.02199 (2016). [pdf] 

[5] Zhu, Yuke, et al. “Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning.” arXiv preprint arXiv:1609.05143 (2016). [pdf] 

[6] Yahya, Ali, et al. “Collective Robot Reinforcement Learning with Distributed Asynchronous Guided Policy Search.” arXiv preprint arXiv:1610.00673 (2016). [pdf] 

[7] Gu, Shixiang, et al. “Deep Reinforcement Learning for Robotic Manipulation.” arXiv preprint arXiv:1610.00633 (2016). [pdf] 

[8] A Rusu, M Vecerik, Thomas Rothörl, N Heess, R Pascanu, R Hadsell.”Sim-to-Real Robot Learning from Pixels with Progressive Nets.” arXiv preprint arXiv:1610.04286 (2016). [pdf] 

[9] Mirowski, Piotr, et al. “Learning to navigate in complex environments.” arXiv preprint arXiv:1611.03673 (2016). [pdf] 

3.7 Art

[1] Mordvintsev, Alexander; Olah, Christopher; Tyka, Mike (2015). “Inceptionism: Going Deeper into Neural Networks“. Google Research. [html] (Deep Dream) 

[2] Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. “A neural algorithm of artistic style.” arXiv preprint arXiv:1508.06576 (2015). [pdf] (Outstanding Work, most successful method currently) 

[3] Zhu, Jun-Yan, et al. “Generative Visual Manipulation on the Natural Image Manifold.” European Conference on Computer Vision. Springer International Publishing, 2016. [pdf] (iGAN) 

[4] Champandard, Alex J. “Semantic Style Transfer and Turning Two-Bit Doodles into Fine Artworks.” arXiv preprint arXiv:1603.01768 (2016). [pdf] (Neural Doodle) 

[5] Zhang, Richard, Phillip Isola, and Alexei A. Efros. “Colorful Image Colorization.” arXiv preprint arXiv:1603.08511 (2016). [pdf] 

[6] Johnson, Justin, Alexandre Alahi, and Li Fei-Fei. “Perceptual losses for real-time style transfer and super-resolution.” arXiv preprint arXiv:1603.08155 (2016). [pdf] 

[7] Vincent Dumoulin, Jonathon Shlens and Manjunath Kudlur. “A learned representation for artistic style.” arXiv preprint arXiv:1610.07629 (2016). [pdf] 

[8] Gatys, Leon and Ecker, et al.”Controlling Perceptual Factors in Neural Style Transfer.” arXiv preprint arXiv:1611.07865 (2016). [pdf] (control style transfer over spatial location,colour information and across spatial scale)

[9] Ulyanov, Dmitry and Lebedev, Vadim, et al. “Texture Networks: Feed-forward Synthesis of Textures and Stylized Images.” arXiv preprint arXiv:1603.03417(2016). [pdf] (texture generation and style transfer) 

3.8 Object Segmentation

[1] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation.” in CVPR, 2015. [pdf] 

[2] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. “Semantic image segmentation with deep convolutional nets and fully connected crfs.” In ICLR, 2015. [pdf] 

[3] Pinheiro, P.O., Collobert, R., Dollar, P. “Learning to segment object candidates.” In: NIPS. 2015. [pdf] 

[4] Dai, J., He, K., Sun, J. “Instance-aware semantic segmentation via multi-task network cascades.” in CVPR. 2016 [pdf] 

[5] Dai, J., He, K., Sun, J. “Instance-sensitive Fully Convolutional Networks.” arXiv preprint arXiv:1603.08678 (2016). [pdf] 



Originally posted at github.com/songrotek

 

时间: 2024-08-29 01:37:24

(zhuan) Where can I start with Deep Learning?的相关文章

基于Deep Learning 的视频识别方法概览

基于Deep Learning 的视频识别方法概览 析策@阿里聚安全 深度学习在最近十来年特别火,几乎是带动AI浪潮的最大贡献者.互联网视频在最近几年也特别火,短视频.视频直播等各种新型UGC模式牢牢抓住了用户的消费心里,成为互联网吸金的又一利器.当这两个火碰在一起,会产生什么样的化学反应呢? 不说具体的技术,先上一张福利图,该图展示了机器对一个视频的认知效果.其总红色的字表示objects, 蓝色的字表示scenes,绿色的字表示activities. 图1 人工智能在视频上的应用主要一个课题

Deep Learning Enables You to Hide Screen when Your Boss is Approaching

https://github.com/Hironsan/BossSensor/ 背景介绍 学生时代,老师站在窗外的阴影挥之不去.大家在玩手机,看漫画,看小说的时候,总是会找同桌帮忙看着班主任有没有来. 一转眼,曾经的翩翩少年毕业了,新的烦恼来了,在你刷知乎,看视频,玩手机的时候,老板来了! 不用担心,不用着急,基于最新的人脸识别+手机推送做出的BossComing.老板站起来的时候,BossComing会通过人脸识别发现老板已经站起来,然后通过手机推送发送通知"BossComing",

关于深度学习(deep learning)的常见疑问 --- 谷歌大脑科学家 Caffe缔造者 贾扬清

问答环节 问:在finetuning的时候,新问题的图像大小不同于pretraining的图像大小,只能缩放到同样的大小吗?" 答:对的:) 问:目前dl在时序序列分析中的进展如何?研究思路如何,能简单描述一下么答:这个有点长,可以看看google最近的一系列machine translation和image description的工作. 问:2个问题:1.目前Caffe主要面对CV或图像的任务,是否会考虑其它任务,比如NLP?2.如果想学习Caffe代码的话,能给一些建议吗?答:Caffe的

QA Systems and Deep Learning Technologies – Part 1

1. Introduction The automatic question and answering (QA) system has been in use for decades now. However, Siri's and Watson's success in 2011 has captured the whole industry's attention. Since the success of these two technologies, the automatic QA

QA Systems and Deep Learning Technologies – Part 2

Introduction This is the second article in a two part series about QA Systems and Deep Learning. You can read part 1 here. Deep Learning is a subfield of machine learning, and aims at using machines for data abstraction with the help of multiple proc

Deep Learning vs. Machine Learning vs. Pattern Recognition

Introduction: Deep learning, machine learning, and pattern recognition are highly relevant topics commonly used in the field of robotics with artificial intelligence. Despite the overlapping similarities, these concepts are not identical. In this art

笔记:Wide &amp; Deep Learning for Recommender Systems

笔记:Wide & Deep Learning for Recommender Systems 前两天自从看到一张图后: 就一直想读一下相关论文,这两天终于有时间把论文看了一下,就是这篇Wide & Deep Learning for Recommender Systems 首先简介,主要说了什么是Wide和Deep: Wide就是:wide是指高维特征+特征组合的LR, 原文Generalized linear models with nonlinear feature transfor

深度|为什么 Deep Learning 最先在语音识别和图像处理领域取得突破?

Deep learning实际上同时推动了很多领域的发展.一个我所知道的例子是自然语言处理NLP中词向量(Word Embedding)方法对传统语言模型的提升[1]:而且我相信,deep learning还会进一步推动更多AI领域的发展. 当然,深度学习DeepLearning最为人所关注也表现最明显的,就是使语音.图像识别获得了长足的进步.其实有的同学已经回答得很漂亮了,只是我忍不住再谈谈自己的理解,抛砖引玉,大家共同讨论. 本着读书人简单问题复杂化--啊不,是论证完整化的标准,我觉得可以从

资深算法工程师眼中的深度学习:Ian Goodfellow 和Yoshua Bengio的「Deep Learning」读书分享

雷锋网 AI 科技评论按:英雄式的科技公司 Tesla 和 SpaceX 的 CEO 埃隆·马斯克对人工智能技术和研究保持批评态度已经不是一天两天了.今年5月份钢铁侠说"90%的学术论文都毫无价值"的时候就引起了学术界的抗议,上个月又说人工智能技术是"人类文明史上面临的最大威胁",又引起了 Facebook CEO 马克·扎克伯格在内众多人工智能支持者的声讨. 当然了,马斯克并不是反科技,他自己也是人工智能研究组织 OpenAI 的发起人之一,他只是不像别人那么乐观