文本相似度计算基本方法小结

在计算文本相似项发现方面,有以下一些可参考的方法。这些概念和方法会帮助我们开拓思路。

相似度计算方面

Jaccard相似度:集合之间的Jaccard相似度等于交集大小与并集大小的比例。适合的应用包括文档文本相似度以及顾客购物习惯的相似度计算等。

Shingling:k-shingle是指文档中连续出现的任意k个字符。如果将文档表示成其k-shingle集合,那么就可以基于集合之间的Jaccard相似度来计算文档之间的文本相似度。有时,将shingle哈希成更短的位串非常有用,可以基于这些哈希值的集合来表示文档。

最小哈希:集合上的最小哈希函数基于全集上的排序转换来定义。给定任意一个排列转换,集合的最小哈希值为在排列转换次序下出现的第一个集合元素。

最小哈希签名:可以选出多个排列转换,然后在每个排列转换下计算集合的最小哈希值,这些最小哈希值序列构成集合的最小哈希签名。给定两个集合,产生相同哈希值的排列转换所占的期望比率正好等于集合之间的Jaccard相似度。

高效最小哈希:由于实际不可能产生随机的排列转换,因此通常会通过下列方法模拟一个排列转换:选择一个随机哈希函数,利用该函数对集合中所有的元素进行哈希操作,其中得到的最小值看成是集合的最小哈希值。

签名的局部敏感哈希:该技术可以允许我们避免计算所有集合对或其最小哈希签名对之间的相似度。给定集合的签名,我们可以将它们划分成行条,然后仅仅计算至少有一个行条相等的集合对之间的相似度。通过合理选择行条大小,可以消除不满足相似度阈值的大部分集合对之间的比较。

向量空间距离方面

欧式距离:n维空间下的欧式距离,是两个点在各维上差值的平方和的算数平方根。适合欧式空间的另一个距离是曼哈顿距离,指两个点各维度的差的绝对值之和。

Jaccard距离:1减去Jaccard相似度也是一个距离测度。

余弦距离:向量空间下两个向量的夹角大小。

编辑距离:该距离测度应用于字符串,指的是通过需要的插入、删除操作将一个字符串处理成另一个字符串的操作次数。编辑距离还可以通过两个字符串长度之和减去两者最长公共子序列长度的两倍来计算。

海明距离:应用于向量空间。两个向量之间的海明距离计算的是它们之间不相同的位置个数。

索引辅助方面

字符索引:如果将集合表示成字符串,且需要达到的相似度阈值接近1。那么就可以将每个字符串按照其头部的一小部分字母建立索引。需要索引的前缀的长度大概等于整个字符串的长度乘以给定的最大的Jaccard距离。

位置索引:我们不仅可以给出索引字符串前缀中的字符,也可以索引其在前缀中的位置。如果两个字符串共有的一个字符并不出现在双方的第一个位置,那么我们就知道要么存在某些前面的字符出现在并集但不出现在交集中,那么在两个字符串中存在一个更前面的公共字符。这样的话,我们就可以减少需要比较的字符串对数目。

后缀索引:我们不仅可以索引字符串前缀中的字符及其位置,还可以索引当前字符后缀的长度,即字符串中该字符之后的位置数量。由于相同字符但是后缀长度不同意味着有额外的字符必须出现在并集但不出现在交集中,因此上述结构能够进一步减少需要比较的字符串数目。

总结

以上的一些概念和方法可以配合使用,可以基本满足许多场景下的相似度计算。相似度计算又可以为相关推荐做基础。怎么做好词的粒度切分,怎么划定阈值,选择何种距离测算,如何优化实现方法还是要下很多功夫的。

两个例子

Levenshtein其实是编辑距离,下面计算编辑距离的方法是把两个String串里的字/词当成一个矩阵来比较和计算。

package zbf.search.recommend;

public class LevenshteinDis {

	public static void main(String[] args) {
		// 要比较的两个字符串
		String str1 = "相似度计算方法";
		String str2 = "文本相似项发现";
		levenshtein(str1, str2);
	}

	public static void levenshtein(String str1, String str2) {

		int len1 = str1.length();
		int len2 = str2.length();

		int[][] dif = new int[len1 + 1][len2 + 1];

		for (int a = 0; a <= len1; a++) {
			dif[a][0] = a;
		}
		for (int a = 0; a <= len2; a++) {
			dif[0][a] = a;
		}

		int temp;
		for (int i = 1; i <= len1; i++) {
			for (int j = 1; j <= len2; j++) {
				if (str1.charAt(i - 1) == str2.charAt(j - 1)) {
					temp = 0;
				} else {
					temp = 1;
				}
				// 取三个值中最小的
				dif[i][j] = min(dif[i - 1][j - 1] + temp, dif[i][j - 1] + 1,
						dif[i - 1][j] + 1);
			}
		}
		System.out.println("字符串\"" + str1 + "\"与\"" + str2 + "\"的比较");
		System.out.println("差异步骤:" + dif[len1][len2]);
		// 计算相似度
		float similarity = 1 - (float) dif[len1][len2]
				/ Math.max(str1.length(), str2.length());
		System.out.println("相似度:" + similarity);
	}

	private static int min(int... is) {
		int min = Integer.MAX_VALUE;
		for (int i : is) {
			if (min > i) {
				min = i;
			}
		}
		return min;
	}

}

下面是余弦距离计算的例子:


public class CosineSimilarAlgorithm {
	public static double getSimilarity(String doc1, String doc2) {
		if (doc1 != null && doc1.trim().length() > 0 && doc2 != null
				&& doc2.trim().length() > 0) {

			Map<Integer, int[]> AlgorithmMap = new HashMap<Integer, int[]>();

			//将两个字符串中的中文字符以及出现的总数封装到,AlgorithmMap中
			for (int i = 0; i < doc1.length(); i++) {
				char d1 = doc1.charAt(i);
				if(isHanZi(d1)){
					int charIndex = getGB2312Id(d1);
					if(charIndex != -1){
						int[] fq = AlgorithmMap.get(charIndex);
						if(fq != null && fq.length == 2){
							fq[0]++;
						}else {
							fq = new int[2];
							fq[0] = 1;
							fq[1] = 0;
							AlgorithmMap.put(charIndex, fq);
						}
					}
				}
			}

			for (int i = 0; i < doc2.length(); i++) {
				char d2 = doc2.charAt(i);
				if(isHanZi(d2)){
					int charIndex = getGB2312Id(d2);
					if(charIndex != -1){
						int[] fq = AlgorithmMap.get(charIndex);
						if(fq != null && fq.length == 2){
							fq[1]++;
						}else {
							fq = new int[2];
							fq[0] = 0;
							fq[1] = 1;
							AlgorithmMap.put(charIndex, fq);
						}
					}
				}
			}

			Iterator<Integer> iterator = AlgorithmMap.keySet().iterator();
			double sqdoc1 = 0;
			double sqdoc2 = 0;
			double denominator = 0;
			while(iterator.hasNext()){
				int[] c = AlgorithmMap.get(iterator.next());
				denominator += c[0]*c[1];
				sqdoc1 += c[0]*c[0];
				sqdoc2 += c[1]*c[1];
			}

			return denominator / Math.sqrt(sqdoc1*sqdoc2);
		} else {
			throw new NullPointerException(
					" the Document is null or have not cahrs!!");
		}
	}

	public static boolean isHanZi(char ch) {
		// 判断是否汉字
		return (ch >= 0x4E00 && ch <= 0x9FA5);

	}

	/**
	 * 根据输入的Unicode字符,获取它的GB2312编码或者ascii编码,
	 *
	 * @param ch
	 *            输入的GB2312中文字符或者ASCII字符(128个)
	 * @return ch在GB2312中的位置,-1表示该字符不认识
	 */
	public static short getGB2312Id(char ch) {
		try {
			byte[] buffer = Character.toString(ch).getBytes("GB2312");
			if (buffer.length != 2) {
				// 正常情况下buffer应该是两个字节,否则说明ch不属于GB2312编码,故返回'?',此时说明不认识该字符
				return -1;
			}
			int b0 = (int) (buffer[0] & 0x0FF) - 161; // 编码从A1开始,因此减去0xA1=161
			int b1 = (int) (buffer[1] & 0x0FF) - 161; // 第一个字符和最后一个字符没有汉字,因此每个区只收16*6-2=94个汉字
			return (short) (b0 * 94 + b1);
		} catch (UnsupportedEncodingException e) {
			e.printStackTrace();
		}
		return -1;
	}
}

				
时间: 2024-10-30 06:38:57

文本相似度计算基本方法小结的相关文章

【BABY夜谈大数据】计算文本相似度

简单讲解 上一章有提到过[基于关键词的空间向量模型]的算法,将用户的喜好以文档描述并转换成向量模型,对商品也是这么处理,然后再通过计算商品文档和用户偏好文档的余弦相似度. 文本相似度计算在信息检索.数据挖掘.机器翻译.文档复制检测等领域有着广泛的应用. 比如舆论控制,我们假设你开发了一个微博网站,并且已经把世界上骂人的句子都已经收录进了数据库,那么当一个用户发微博时会先跟骂人句子的数据库进行比较,如果符合里面的句子就不让用户发出. 通常情况下,很多工程师就会想到用like或者where的sql语

文本相似度结合PageRank算法

目标 尝试了一下把PageRank算法结合了文本相似度计算.直觉上是想把一个list里,和大家都比较靠拢的文本可能最后的PageRank值会比较大.因为如果最后计算的PageRank值大,说明有比较多的文本和他的相似度值比较高,或者有更多的文本向他靠拢.这样是不是就可以得到一些相对核心的文本,或者相对代表性的文本?如果是要在整堆文本里切分一些关键的词做token,那么每个token在每份文本里的权重就可以不一样,那么是否就可以得到比较核心的token,来给这些文本打标签?当然,分词切词的时候都是

海量数据相似度计算实例 simhash和海明距离

通过 采集系统 我们采集了大量文本数据,但是文本中有很多重复数据影响我们对于结果的分析.分析前我们需要对这些数据去除重复,如何选择和设计文本的去重算法?常见的有余弦夹角算法.欧式距离.Jaccard相似度.最长公共子串.编辑距离等.这些算法对于待比较的文本数据不多时还比较好用,如果我们的爬虫每天采集的数据以千万计算,我们如何对于这些海量千万级的数据进行高效的合并去重.最简单的做法是拿着待比较的文本和数据库中所有的文本比较一遍如果是重复的数据就标示为重复.看起来很简单,我们来做个测试,就拿最简单的

LSF-SCNN:一种基于CNN的短文本表达模型及相似度计算的全新优化模型

本篇文章是我在读期间,对自然语言处理中的文本相似度问题研究取得的一点小成果.如果你对自然语言处理 (natural language processing, NLP) 和卷积神经网络(convolutional neural network, CNN)有一定的了解,可以直接看摘要和LSF-SCNN创新与技术实现部分.如果能启发灵感,应用于更多的现实场景中带来效果提升,那才是这篇文章闪光的时刻.如果你没有接触过NLP和CNN,也不在担心,可以从头到尾听我娓娓道来.有任何问题,欢迎交流. 1. 摘要

Python简单实现基于VSM的余弦相似度计算

        在知识图谱构建阶段的实体对齐和属性值决策.判断一篇文章是否是你喜欢的文章.比较两篇文章的相似性等实例中,都涉及到了向量空间模型(Vector Space Model,简称VSM)和余弦相似度计算相关知识.        这篇文章主要是先叙述VSM和余弦相似度相关理论知识,然后引用阮一峰大神的例子进行解释,最后通过Python简单实现百度百科和互动百科Infobox的余弦相似度计算. 一. 基础知识         第一部分参考我的文章: 基于VSM的命名实体识别.歧义消解和指代消

数据挖掘分类方法小结

分类技术在很多领域都有应用,例如可以通过客户分类构造一个分类模型来对银行贷款进行风险评估:当前的市场营销中很重要的一个特点是强调客户细分.客户类别分析的功能也在于此,采用数据挖掘中的分类技术,可以将客户分成不同的类别,比如呼叫中心设计时可以分为:呼叫频繁的客户.偶然大量呼叫的客户.稳定呼叫的客户.其他,帮助呼叫中心寻找出这些不同种类客户之间的特征,这样的分类模型可以让用户了解不同行为类别客户的分布特征:其他分类应用如文献检索和搜索引擎中的自动文本分类技术:安全领域有基于分类技术的入侵检测等等.机

文本相似度判定

简介 针对文本相似判定,本文提供余弦相似度和SimHash两种算法,并根据实际项目遇到的一些问题,给出相应的解决方法.经过实际测试表明:余弦相似度算法适合于短文本,而SimHash算法适合于长文本,并且能应用于大数据环境中. 余弦相似度 原理 余弦定理:                    图-1 余弦定理图示 性质: 余弦值的范围在[-1,1]之间,值越趋近于1,代表两个向量的方向越趋近于0°,他们的方向更加一致,相应的相似度也越高.需要指出的是,在文本相似度判定中,因为文本特征向量定义的特

Android手机内存中文件的读写方法小结

  Android手机内存中文件的读写方法小结         这篇文章主要介绍了Android手机内存中文件的读写方法,实例总结了Android针对文件读写操作的相关技巧,非常具有实用价值,需要的朋友可以参考: 如何对手机内存中的文件数据进行读写呢? Context提供了领个方法来打开该应用程序的数据文件夹中的文件I/O流,具体如下: ? 1 FileInputStream openFileInput(String name) 打开应用程序的数据文件夹下的name文件对应的数据流 ? 1 Fi

Word文档中对表格中数据进行计算的方法

  Word文档中对表格中数据进行计算的方法          1.在表格的最后一个单元格中单击放置插入点光标,然后在"表格工具-布局"选项卡中单击"数据"组中的"公式"按钮,如图1所示. 图1 单击"公式"按钮 2.打开"公式"对话框,在"编号格式"下拉列表中选择公式结果的显示格式,在"粘贴函数"下拉列表中选择需要使用的函数,如图2所示.此时公式将被粘贴到"