都在说Hadoop火热,但是很多朋友还是听得云里雾里,到底是用在哪里,并且是怎么用的?那接下来笔者就通过eBay的Hadoop环境应用的例子来给大家揭示其中的奥秘:
eBay分析平台开发小组的Anil Madan讨论了这家拍卖行业的巨擘在如何充分发挥Hadoop平台的强大功能,充分利用每天潮水般涌入的8TB至10TB数据。
虽然eBay只是几年前才开始向生产型Hadoop环境转移,但它却是早在2007年就率先开始试用Hadoop的大规模互联网公司之一,当时它使用一个小型集群来处理机器学习和搜索相关性方面的问题。这些涉及的是少量数据;Madan表示,但是就这个试验项目而言很有用;不过随着数据日益增加、用户活动日益频繁,eBay想充分利用几个部门和整个用户群当中的数据。
eBay的第一个大型Hadoop集群是500个节点组成的Athena,这个专门建造的生产型平台可以满足eBay内部几个部门的要求。该集群只用了不到三个月就建成了,开始高速处理预测模型、解决实时问题;后来不断扩大规模,以满足其他要求。
Madan表示,该集群现由eBay的许多小组使用,既用于日常生产作业,又用于一次性作业。小组使用Hadoop的公平调度器(Fair Scheduler)来管理资源分配、为各小组定义作业池、赋予权重、限制每个用户和小组的并行作业,并且设定抢占超时和延迟调度。
虽然Madan经常在台上畅谈Hadoop具有的实际价值,他也经常提到工作小组在扩建eBay基础设施时面临、继续竭力克服的几个主要挑战。下面列出了与Hadoop有关的一系列挑战:
可扩展性
就现有版本而言,主服务器NameNde存在可扩展性问题。由于集群的文件系统不断扩大,它占用的内存空间也随之扩大,因为它把整个元数据保存在内存中。1PB的存储容量大概需要 1GB的内存容量。几种切实可行的解决方案是分层命名空间分区,或者结合使用Zkeeper和HBase,实现元数据管理。
可用性
NameNde的可用性对生产型工作负载来说至关重要。开源社区正致力于冷备份(cld standby)、暖备份(warm standby)和热备份(ht standby)这几个选项,比如检查点(Checkpint)节点和备份(Backup)节点;从辅助NameNde切换avatar的Avatar节点;以及日志元数据复制技术。我们正在评估这些方案,以建立我们的生产型集群。
数据发现
在天生不支持数据结构的系统上支持数据监管、发现和模式管理。一个新项目准备把Hive的元数据存储区和wl合并成一个新系统,名为Hwl。我们旨在努力把该系统连接到我们的分析平台中,那样我们的用户很容易跨不同的数据系统发现数据。
数据移动
我们正在努力开发发布/订阅数据移动工具,以便跨我们不同的子系统,如数据仓库和Hadoop分布式文件系统(HDFS),支持数据拷贝和调和。
策略
通过配额(目前的Hadoop配额需要做一些改进)进行存储容量管理,能够制定良好的保留、归档和备份等策略。我们正根据集群的工作负载和特点,跨不同的集群努力定义这些策略。
度量指标、度量指标、度量指标
我们正在开发成熟可靠的工具,以便生成度量指标,用于度量数据来源、使用情况、预算编制和利用率。一些Hadoop企业服务器体现的现有度量指标有的不够全面,有的只是临时的,很难看清楚集群使用模式。
这样,很明显,可以看出Hadoop的可用之处是如此的大,有兴趣学习这方面的朋友可以留意北风网Hadoop系列课程,结合原创性、实用性、渐进性为一体。祝大家早日成为尖端大数据人才!
如何入手:大数据面面观
持续上行:Hadoop大数据平台又获巨额投资
不学习新技术就快失业:十大最受欢迎的IT技术
文章相关课程 Hadoop2.0/YARN
深入浅出(Hadoop2.0、Spark、Storm和Tez) 基于Hadoop2.0、YARN技术的大数据高阶应用实战(Hadoop2.0\YARN\MapReduce\数据挖掘\项目实战) 升级版:深入浅出Hadoop实战开发(云存储、MapReduce、HBase实战微博、Hive应用、Storm应用)