数据结构实践——迷宫问题之图深度优先遍历解法

本文是针对[数据结构基础系列(7):图]的实践项目。

【项目 - 迷宫问题之图深度优先遍历解法】
  设计一个程序,采用深度优先遍历算法的思路,解决迷宫问题。
  (1)建立迷宫对应的图数据结构,并建立其邻接表表示。
  (2)采用深度优先遍历的思路设计算法,输出从入口(1,1)点到出口(M,N)的所有迷宫路径。

[模型建立]
  将迷宫中的每一格作为一个顶点,相邻格子可以到达,则对应的顶点之间存在边相连。
  例如,下面的迷宫

在使用数组表示时,用0表示格子是空地,用1表示格子处是墙,对应的矩阵是:

    int mg[M+2][N+2]=   //迷宫数组
    {
        {1,1,1,1,1,1},
        {1,0,0,0,1,1},
        {1,0,1,0,0,1},
        {1,0,0,0,1,1},
        {1,1,0,0,0,1},
        {1,1,1,1,1,1}
    };

建立的图结构为:

于是,从(1,1)到(4,4)的迷宫问题,转化为寻找顶点(1,1)到顶点(4,4)的路径的问题。

[参考代码]

#include <stdio.h>
#include <malloc.h>
#define MaxSize 100
#define M 4
#define N 4
//以下定义邻接表类型
typedef struct ANode            //边的结点结构类型
{
    int i,j;                    //该边的终点位置(i,j)
    struct ANode *nextarc;      //指向下一条边的指针
} ArcNode;

typedef struct Vnode            //邻接表头结点的类型
{
    ArcNode *firstarc;          //指向第一条边
} VNode;

typedef struct
{
    VNode adjlist[M+2][N+2];    //邻接表头节点数组
} ALGraph;                      //图的邻接表类型

typedef struct
{
    int i;                      //当前方块的行号
    int j;                      //当前方块的列号
} Box;

typedef struct
{
    Box data[MaxSize];
    int length;                 //路径长度
} PathType;                     //定义路径类型

int visited[M+2][N+2]= {0};
int count=0;
void CreateList(ALGraph *&G,int mg[][N+2])
//建立迷宫数组对应的邻接表G
{
    int i,j,i1,j1,di;
    ArcNode *p;
    G=(ALGraph *)malloc(sizeof(ALGraph));
    for (i=0; i<M+2; i++)                   //给邻接表中所有头节点的指针域置初值
        for (j=0; j<N+2; j++)
            G->adjlist[i][j].firstarc=NULL;
    for (i=1; i<=M; i++)                    //检查mg中每个元素
        for (j=1; j<=N; j++)
            if (mg[i][j]==0)
            {
                di=0;
                while (di<4)
                {
                    switch(di)
                    {
                    case 0:
                        i1=i-1;
                        j1=j;
                        break;
                    case 1:
                        i1=i;
                        j1=j+1;
                        break;
                    case 2:
                        i1=i+1;
                        j1=j;
                        break;
                    case 3:
                        i1=i, j1=j-1;
                        break;
                    }
                    if (mg[i1][j1]==0)                          //(i1,j1)为可走方块
                    {
                        p=(ArcNode *)malloc(sizeof(ArcNode));   //创建一个节点*p
                        p->i=i1;
                        p->j=j1;
                        p->nextarc=G->adjlist[i][j].firstarc;   //将*p节点链到链表后
                        G->adjlist[i][j].firstarc=p;
                    }
                    di++;
                }
            }
}
//输出邻接表G
void DispAdj(ALGraph *G)
{
    int i,j;
    ArcNode *p;
    for (i=0; i<M+2; i++)
        for (j=0; j<N+2; j++)
        {
            printf("  [%d,%d]: ",i,j);
            p=G->adjlist[i][j].firstarc;
            while (p!=NULL)
            {
                printf("(%d,%d)  ",p->i,p->j);
                p=p->nextarc;
            }
            printf("\n");
        }
}
void FindPath(ALGraph *G,int xi,int yi,int xe,int ye,PathType path)
{
    ArcNode *p;
    visited[xi][yi]=1;                   //置已访问标记
    path.data[path.length].i=xi;
    path.data[path.length].j=yi;
    path.length++;
    if (xi==xe && yi==ye)
    {
        printf("  迷宫路径%d: ",++count);
        for (int k=0; k<path.length; k++)
            printf("(%d,%d) ",path.data[k].i,path.data[k].j);
        printf("\n");
    }
    p=G->adjlist[xi][yi].firstarc;  //p指向顶点v的第一条边顶点
    while (p!=NULL)
    {
        if (visited[p->i][p->j]==0) //若(p->i,p->j)方块未访问,递归访问它
            FindPath(G,p->i,p->j,xe,ye,path);
        p=p->nextarc;               //p指向顶点v的下一条边顶点
    }
    visited[xi][yi]=0;
}

int main()
{
    ALGraph *G;
    int mg[M+2][N+2]=                           //迷宫数组
    {
        {1,1,1,1,1,1},
        {1,0,0,0,1,1},
        {1,0,1,0,0,1},
        {1,0,0,0,1,1},
        {1,1,0,0,0,1},
        {1,1,1,1,1,1}
    };
    CreateList(G,mg);
    printf("迷宫对应的邻接表:\n");
    DispAdj(G); //输出邻接表
    PathType path;
    path.length=0;
    printf("所有的迷宫路径:\n");
    FindPath(G,1,1,M,N,path);
    return 0;
}

测试时,换作下面的迷宫试一试:

时间: 2024-11-03 22:01:51

数据结构实践——迷宫问题之图深度优先遍历解法的相关文章

数据结构算法-农夫过河问题用深度优先遍历和广度优先遍历?

问题描述 农夫过河问题用深度优先遍历和广度优先遍历? 农夫过河问题用深度优先遍历和广度优先遍历的区别?用哪个更好? 解决方案 求解这个问题的最简单的方法是一步一步进行试探,每一步都搜索所有可能的选择,对前一步合适的选择再考虑下一步的各种方案. 用计算机实现上述求解的搜索过程可以采用两种不同的策略:一种是广度优先(breadth_first) 搜索,另一种是深度优先(depth_first) . 广度优先: u 广度优先的含义就是在搜索过程中总是首先搜索下面一步的所有可能状态,然后再进一步考虑更后

数据结构实践项目——图的基本运算及遍历操作

本文是针对[数据结构基础系列(7):图]中第1-9课时的实践项目. 0701 图结构导学 0702 图的定义 0703 图的基本术语 0704 图的邻接矩阵存储结构及算法 0705 图的邻接表存储结构及算法 0706 图的遍历 0707 非连通图的遍历 0708 DFS的应用 0709 BFS的应用 [项目1 - 图基本算法库] 定义图的邻接矩阵和邻接表存储结构,实现其基本运算,并完成测试. 要求: 1.头文件graph.h中定义相关的数据结构并声明用于完成基本运算的函数.对应基本运算的函数包括

算法-有关图的深度优先遍历问题的学习

问题描述 有关图的深度优先遍历问题的学习 请问,如何学习掌握深搜算法,求推荐例题,经典题目,为了参加ACM 解决方案 http://blog.csdn.net/u014271612/article/details/47705289 可以看一下思想! 解决方案二: 图的深度优先遍历图的深度优先遍历图深度优先遍历 解决方案三: www.codevs.cn 题库->搜索->深度优先搜索

算法研究:图的深度优先遍历

图的遍历和树的遍历类似,我们希望从图中某一顶点出发访遍图中其余顶点,且使每一个顶点仅被访问一次,这一过程 就叫做图的遍历(Traverse Graph). 图的遍历方法一般有两种,第一种是深度优先遍历(Depth First Search),也 有称为深度优先搜索,简称为DFS.第二种是<广度优先遍历(Breadth  First Search)>,也有称为广度优先搜索, 简称为BFS.我们在<堆栈与深度优先搜索>中已经较为详细地讲述了深度优先搜索的策略,这里不再赘述.我们也可以把

图的深度优先遍历算法

前言 图的遍历与前面文章中的二叉树遍历还是存在很大区别的.所谓图的遍历指的是从图中的某一个顶点出发访问图中的其余顶点,并且需要保证每个顶点只被访问一次.由于图比二叉树复杂得多,所以前面二叉树的遍历算法在图中是行不通的.因为对于任意一个顶点来讲,都可能与其余的顶点发生连接.如果不对访问的顶点做一些处理,出发重复访问的几率是很高的.因此,一个基本思想是设置一个标记数组,主要用于标记已经被访问过的顶点.图的遍历算法主要有两种:深度优先遍历和广度优先遍历.本篇文章主要介绍的是深度优先遍历算法. 深度优先

数据结构例程——图的遍历

本文是[数据结构基础系列(7):图]中第6课时[图的遍历]的例程. 1.深度优先遍历--DFS(程序中graph.h是图存储结构的"算法库"中的头文件,详情请单击链接-) #include <stdio.h> #include <malloc.h> #include "graph.h" int visited[MAXV]; void DFS(ALGraph *G, int v) { ArcNode *p; int w; visited[v]=

图的深度优先遍历:邻接表实现

这里用邻接表实现图的深度优先遍历,采用递归实现. #include<iostream> using namespace std; #define VERTEXNUM 5//结点数 struct edgenode { int to; int weight; // 边的权值 edgenode *next; }; struct vnode { int from; edgenode *first; }; void createGraph(vnode *adjilist, int start, int

图的遍历之深度优先搜索和广度优先搜索

深度优先搜索的图文介绍 1. 深度优先搜索介绍 图的深度优先搜索(Depth First Search),和树的先序遍历比较类似. 它的思想:假设初始状态是图中所有顶点均未被访问,则从某个顶点v出发,首先访问该顶点,然后依次从它的各个未被访问的邻接点出发深度优先搜索遍历图,直至图中所有和v有路径相通的顶点都被访问到.  若此时尚有其他顶点未被访问到,则另选一个未被访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止. 显然,深度优先搜索是一个递归的过程. 2. 深度优先搜索图解 2.

无向图的深度遍历-数据结构C语言无向图的深度优先遍历,不知错在那了,遍历不出

问题描述 数据结构C语言无向图的深度优先遍历,不知错在那了,遍历不出 #include #include #define Max 100 #define Wu 0 typedef struct { int vexs[Max]; int arcs[Max][Max]; int vexnum; }MGraph; int visited[Max]; void CreateGraph(MGraph *G,int n) { int i,j,e,u,v,value; for(i=0;i<n;i++) { p