解释器模式

解释器模式:

解释器模式是类的行为模式。给定一个语言之后,解释器模式可以定义出其文法的一种表示,并同时提供一个解释器。客户端可以使用这个解释器来解释这个语言中的句子。

组成

模式所涉及到4个角色:

  • 抽象表达式(Expression)角色:声明一个所有的具体表达式角色都需要实现的抽象接口。这个接口主要是一个interpret()方法,称做解释操作。
  • 终结符表达式(Terminal Expression)角色:实现了抽象表达式角色所要求的接口,主要是一个interpret()方法;文法中的每一个终结符都有一个具体终结表达式与之相对应。比如有一个简单的公式R=R1+R2,在里面R1和R2就是终结符,对应的解析R1和R2的解释器就是终结符表达式。
  • 非终结符表达式(Nonterminal Expression)角色:文法中的每一条规则都需要一个具体的非终结符表达式,非终结符表达式一般是文法中的运算符或者其他关键字,比如公式R=R1+R2中,“+"就是非终结符,解析“+”的解释器就是一个非终结符表达式。
  • 环境(Context)角色:这个角色的任务一般是用来存放文法中各个终结符所对应的具体值,比如R=R1+R2,我们给R1赋值100,给R2赋值200。这些信息需要存放到环境角色中,很多情况下我们使用Map来充当环境角色就足够了。

UML图

 适用场景:

  • 当有一个语言需要解释执行,并且你可将该语言中的句子表示为一个抽象语法树,可以使用解释器模式。而当存在以下情况时该模式效果最好
  • 该文法的类层次结构变得庞大而无法管理。此时语法分析程序生成器这样的工具是最好的选择。他们无需构建抽象语法树即可解释表达式,这样可以节省空间而且还可能节省时间。
  • 效率不是一个关键问题,最高效的解释器通常不是通过直接解释语法分析树实现的,而是首先将他们装换成另一种形式,例如,正则表达式通常被装换成状态机,即使在这种情况下,转换器仍可用解释器模式实现,该模式仍是有用的。

代码实现

 class Context
    {
        private int sum;
        public int Sum
        {
            get { return sum; }
            set { sum=value;}
        }

    }

    /// 解释器抽象类。

   abstract class AbstractExpreesion
    {
        public abstract void Interpret(Context context);

    }

    ///   解释器具体实现类

    class PlusExpression : AbstractExpreesion
    {
        public override void Interpret(Context context)
        {
            int sum = context.Sum;
            sum++;
            context.Sum = sum;

        }
    }

    ///   解释器具体实现类。 自减

    class MinusExpression : AbstractExpreesion
    {
        public override void Interpret(Context context)
        {
            int sum = context.Sum;
            sum--;
            context.Sum = sum;

        }
    }

测试

 class Interpreter{
        static void Main(string[] args){
            Context context = new Context();
            context.Sum = 10;
            List<AbstractExpreesion> list = new List<AbstractExpreesion>();
            //运行加法三次
            list.Add(new PlusExpression());
            list.Add(new PlusExpression());
            list.Add(new PlusExpression());
            //运行减法两次
            list.Add(new MinusExpression());
            list.Add(new MinusExpression());
            for (int i = 0; i < list.Count(); i++)
            {
                AbstractExpreesion expression = list[i];
                expression.Interpret(context);
            }
            Console.WriteLine(context.Sum);
            Console.ReadLine();
        }
    }
时间: 2024-09-23 05:22:09

解释器模式的相关文章

PHP设计模式之解释器模式

解释器: 解释器设计模式用于分析一个实体的关键元素,并且针对每个元素都提供自己的解释或相应的动作. 解释器设计模式最常用于PHP/HTML 模板系统. <?php        class User {            protected $_username = "";            public function __construct($username) {                $this->_username = $username;  

.Net设计模式实例之解释器模式(Interpreter Pattern)

一.解释器模式简介(Brief Introduction) 解释器模式(Interpreter Pattern),给定一个语言,定义它的文法的一种表示,并定 义一个解释器,这个解释器使用该表示来解释语言中的句子.使用了解释器模式,可以很容 易地改变和扩展文法,因为该模式使用类来表示文法规则,可以使用继承来改变或扩展该文 法.也比较容易实现文法,因为定义抽象语法树中各个节点的类的实现大体类似,这些类容 易直接编写. 二.解决的问题(What To Solve) 如果一种特定类型的问题发生的频率足够

Java设计模式编程之解释器模式的简单讲解_java

0.解释器(Interpreter)模式定义 :给定一门语言,定义它的文法的一种表示,并定义一个解释器,该解释器使用该表示来解释语言中句子. 属于行为型模式. 解释器模式在实际的系统开发中使用的非常少,因为它会引起效率.性能以及维护等问题. 解释器模式的通用类图如图所示. 1.解释器模式的优点 解释器是一个简单语法分析工具,它最显著的优点就是扩展性,修改语法规则只要修改相应的非终结符表达式就可以了,若扩展语法,则只要增加非终结符类就可以了. 2.解释器模式的缺点 解释器模式会引起类膨胀:每个语法

20、Python与设计模式--解释器模式

一.模拟吉他 要开发一个自动识别谱子的吉他模拟器,达到录入谱即可按照谱发声的效果.除了发声设备外(假设已完成),最重要的就是读谱和译谱能力了.分析其需求,整个过程大致上分可以分为两部分:根据规则翻译谱的内容:根据翻译的内容演奏.我们用一个解释器模型来完成这个功能. class PlayContext(): play_text = None class Expression(): def interpret(self, context): if len(context.play_text) ==

乐在其中设计模式(C#) - 解释器模式(Interpreter Pattern)

原文:乐在其中设计模式(C#) - 解释器模式(Interpreter Pattern)[索引页][源码下载] 乐在其中设计模式(C#) - 解释器模式(Interpreter Pattern) 作者:webabcd 介绍 给定一个语言, 定义它的文法的一种表示,并定义一个解释器,该解释器使用该表示来解释语言中的句子. 示例 有一个Message实体类,某个类对它的操作有Get()方法.现在要求用具有某一规则的中文语法来执行这个操作. MessageModel using System;usin

第19章 解释器模式(Interpreter Pattern)

原文 第19章 解释器模式(Interpreter Pattern) 解释器模式        导读:解释器模式,平常用的比较的少,所以在写这个模式之前在博客园搜索了一番,看完之后那叫一个头大.篇幅很长,我鼓足了劲看了半天的描述跟解释,可能是本人的水平有限,或者是耐心太差,看到一半就有点扛不住了.我感觉对于一个菜鸟或者是没接触过设计模式的人来说,在看设计模式的时候更希望作者能简短的用几行代码来描述设计模式,这样起码看完大体有个概念.           概述:          Interpre

Java设计模式(二十三)----解释器模式

解释器模式 定义:解释器模式是类的行为模式.给定一个语言之后,解释器模式可以定义出其文法的一种表示,并同时提供一个解释器.客户端可以使用这个解释器来解释这个语言中的句子. 解释器模式的结构 下面就以一个示意性的系统为例,讨论解释器模式的结构.系统的结构图如下所示: 模式所涉及的角色如下所示: (1)抽象表达式(Expression)角色:声明一个所有的具体表达式角色都需要实现的抽象接口.这个接口主要是一个interpret()方法,称做解释操作. (2)终结符表达式(Terminal Expre

解析Java的设计模式编程之解释器模式的运用_java

定义:给定一种语言,定义他的文法的一种表示,并定义一个解释器,该解释器使用该表示来解释语言中句子.类型:行为类模式类图: 解释器模式是一个比较少用的模式,本人之前也没有用过这个模式.下面我们就来一起看一下解释器模式.  解释器模式的结构抽象解释器:声明一个所有具体表达式都要实现的抽象接口(或者抽象类),接口中主要是一个interpret()方法,称为解释操作.具体解释任务由它的各个实现类来完成,具体的解释器分别由终结符解释器TerminalExpression和非终结符解释器Nontermina

JAVA设计模式之解释器模式详解_java

在阎宏博士的<JAVA与模式>一书中开头是这样描述解释器(Interpreter)模式的: 解释器模式是类的行为模式.给定一个语言之后,解释器模式可以定义出其文法的一种表示,并同时提供一个解释器.客户端可以使用这个解释器来解释这个语言中的句子. 解释器模式的结构 下面就以一个示意性的系统为例,讨论解释器模式的结构.系统的结构图如下所示: 模式所涉及的角色如下所示: (1)抽象表达式(Expression)角色:声明一个所有的具体表达式角色都需要实现的抽象接口.这个接口主要是一个interpre

深入解析C++设计模式编程中解释器模式的运用_C 语言

解释器模式(interpreter),给定一个语言,定义它的文法的一种表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子. 解释器模式需要解决的是,如果一种特定类型的问题发生的频率足够高,那么可能就值得将该问题的各个实例表述为一个简单语言中的句子.这样就可以构建一个解释器,该解释器通过解释这些句子来解决该问题.当有一个语言需要解释执行,并且你可将该语言中的句子表示为一个抽象语法树时,可使用解释器模式.用了解释器模式,就意味着可以很容易地改变和扩展文法,因为该模式使用类来表示文法规则,