对C语言中递归算法的深入解析

   C通过运行时堆栈支持递归函数的实现。递归函数就是直接或间接调用自身的函数。
     许多教科书都把计算机阶乘和菲波那契数列用来说明递归,非常不幸我们可爱的著名的老潭老师的《C语言程序设计》一书中就是从阶乘的计算开始的函数递归。导 致读过这本经书的同学们,看到阶乘计算第一个想法就是递归。但是在阶乘的计算里,递归并没有提供任何优越之处。在菲波那契数列中,它的效率更是低的非常恐 怖。

     这里有一个简单的程序,可用于说明递归。程序的目的是把一个整数从二进制形式转换为可打印的字符形式。例如:给出一个值4267,我们需要依次产生字符‘4’,‘2’,‘6’,和‘7’。就如在printf函数中使用了%d格式码,它就会执行类似处理。

     我们采用的策略是把这个值反复除以10,并打印各个余数。例如,4267除10的余数是7,但是我们不能直接打印这个余数。我们需要打印的是机器字符集中 表示数字‘7’的值。在ASCII码中,字符‘7’的值是55,所以我们需要在余数上加上48来获得正确的字符,但是,使用字符常量而不是整型常量可以提 高程序的可移植性。‘0’的ASCII码是48,所以我们用余数加上‘0’,所以有下面的关系:

          ‘0’+ 0 =‘0’
          ‘0’+ 1 =‘1’
          ‘0’+ 2 =‘2’
             ...

  从这些关系中,我们很容易看出在余数上加上‘0’就可以产生对应字符的代码。接着就打印出余数。下一步再取商的值,4267/10等于426。然后用这个值重复上述步骤。

  这种处理方法存在的唯一问题是它产生的数字次序正好相反,它们是逆向打印的。所以在我们的程序中使用递归来修正这个问题。

  我们这个程序中的函数是递归性质的,因为它包含了一个对自身的调用。乍一看,函数似乎永远不会终止。当函数调用时,它将调用自身,第2次调用还将调用自身,以此类推,似乎永远调用下去。这也是我们在刚接触递归时最想不明白的事情。但是,事实上并不会出现这种情况。

  这个程序的递归实现了某种类型的螺旋状while循环。while循环在循环体每次执行时必须取得某种进展,逐步迫近循环终止条件。递归函数也是如此,它在每次递归调用后必须越来越接近某种限制条件。当递归函数符合这个限制条件时,它便不在调用自身

在程序中,递归函数的限制条件就是变量quotient为零。在每次递归调用之前,我们都把quotient除以10,所以每递归调用一次,它的值就越来越接近零。当它最终变成零时,递归便告终止。

/*接受一个整型值(无符号0,把它转换为字符并打印它,前导零被删除*/

#include <stdio.h>

int binary_to_ascii( unsigned int value)
{
          unsigned int quotient;
    
     quotient = value / 10;
     if( quotient != 0)
           binary_to_ascii( quotient);
     putchar ( value % 10 + '0' );
}

递归是如何帮助我们以正确的顺序打印这些字符呢?下面是这个函数的工作流程。
       1. 将参数值除以10
       2. 如果quotient的值为非零,调用binary-to-ascii打印quotient当前值的各位数字

  3. 接着,打印步骤1中除法运算的余数

  注意在第2个步骤中,我们需要打印的是quotient当前值的各位数字。我们所面临的问题和最初的问题完全相同,只是变量quotient的 值变小了。我们用刚刚编写的函数(把整数转换为各个数字字符并打印出来)来解决这个问题。由于quotient的值越来越小,所以递归最终会终止。

  一旦你理解了递归,阅读递归函数最容易的方法不是纠缠于它的执行过程,而是相信递归函数会顺利完成它的任务。如果你的每个步骤正确无误,你的限制条件设置正确,并且每次调用之后更接近限制条件,递归函数总是能正确的完成任务。

  但是,为了理解递归的工作原理,你需要追踪递归调用的执行过程,所以让我们来进行这项工作。追踪一个递归函数的执行过程的关键是理解函数中所声 明的变量是如何存储的。当函数被调用时,它的变量的空间是创建于运行时堆栈上的。以前调用的函数的变量扔保留在堆栈上,但他们被新函数的变量所掩盖,因此 是不能被访问的。

  当递归函数调用自身时,情况于是如此。每进行一次新的调用,都将创建一批变量,他们将掩盖递归函数前一次调用所创建的变量。当我追踪一个递归函数的执行过程时,必须把分数不同次调用的变量区分开来,以避免混淆。

  程序中的函数有两个变量:参数value和局部变量quotient。下面的一些图显示了堆栈的状态,当前可以访问的变量位于栈顶。所有其他调用的变量饰以灰色的阴影,表示他们不能被当前正在执行的函数访问。

假定我们以4267这个值调用递归函数。当函数刚开始执行时,堆栈的内容如下图所示:
 


执行除法之后,堆栈的内容如下:


 
接着,if语句判断出quotient的值非零,所以对该函数执行递归调用。当这个函数第二次被调用之初,堆栈的内容如下:
 


堆栈上创建了一批新的变量,隐藏了前面的那批变量,除非当前这次递归调用返回,否则他们是不能被访问的。再次执行除法运算之后,堆栈的内容如下:
 


quotient的值现在为42,仍然非零,所以需要继续执行递归调用,并再创建一批变量。在执行完这次调用的出发运算之后,堆栈的内容如下:
 


此时,quotient的值还是非零,仍然需要执行递归调用。在执行除法运算之后,堆栈的内容如下:
 


 

  不算递归调用语句本身,到目前为止所执行的语句只是除法运算以及对quotient的值进行测试。由于递归调用这些语句重复执行,所以它的效果 类似循环:当quotient的值非零时,把它的值作为初始值重新开始循环。但是,递归调用将会保存一些信息(这点与循环不同),也就好是保存在堆栈中的 变量值。这些信息很快就会变得非常重要。

  现在quotient的值变成了零,递归函数便不再调用自身,而是开始打印输出。然后函数返回,并开始销毁堆栈上的变量值。

每次调用putchar得到变量value的最后一个数字,方法是对value进行模10取余运算,其结果是一个0到9之间的整数。把它与字符常量‘0’相加,其结果便是对应于这个数字的ASCII字符,然后把这个字符打印出来。

   输出4:

 


接着函数返回,它的变量从堆栈中销毁。接着,递归函数的前一次调用重新继续执行,她所使用的是自己的变量,他们现在位于堆栈的顶部。因为它的value值是42,所以调用putchar后打印出来的数字是2。

  输出42:

 


接着递归函数的这次调用也返回,它的变量也被销毁,此时位于堆栈顶部的是递归函数再前一次调用的变量。递归调用从这个位置继续执行,这次打印的数字是6。在这次调用返回之前,堆栈的内容如下:

  输出426:

 


现在我们已经展开了整个递归过程,并回到该函数最初的调用。这次调用打印出数字7,也就是它的value参数除10的余数。

  输出4267:

 


然后,这个递归函数就彻底返回到其他函数调用它的地点。
如果你把打印出来的字符一个接一个排在一起,出现在打印机或屏幕上,你将看到正确的值:4267

汉诺塔问题递归算法分析:

  一个庙里有三个柱子,第一个有64个盘子,从上往下盘子越来越大。要求庙里的老和尚把这64个盘子全部移动到第三个柱子上。移动的时候始终只能小盘子压着大盘子。而且每次只能移动一个。

  1、此时老和尚(后面我们叫他第一个和尚)觉得很难,所以他想:要是有一个人能把前63个盘子先移动到第二个柱子上,我再把最后一个盘子直接移 动到第三个柱子,再让那个人把刚才的前63个盘子从第二个柱子上移动到第三个柱子上,我的任务就完成了,简单。所以他找了比他年轻的和尚(后面我们叫他第 二个和尚),命令:

          ① 你丫把前63个盘子移动到第二柱子上

          ② 然后我自己把第64个盘子移动到第三个柱子上后

          ③ 你把前63个盘子移动到第三柱子上

      2、第二个和尚接了任务,也觉得很难,所以他也和第一个和尚一样想:要是有一个人能把前62个盘子先移动到第三个柱子上,我再把最后一个盘子直接移动到第 二个柱子,再让那个人把刚才的前62个盘子从第三个柱子上移动到第三个柱子上,我的任务就完成了,简单。所以他也找了比他年轻的和尚(后面我们叫他第三和 尚),命令:

          ① 你把前62个盘子移动到第三柱子上

          ② 然后我自己把第63个盘子移动到第二个柱子上后

          ③ 你把前62个盘子移动到第二柱子上

  3、第三个和尚接了任务,又把移动前61个盘子的任务依葫芦话瓢的交给了第四个和尚,等等递推下去,直到把任务交给了第64个和尚为止(估计第64个和尚很郁闷,没机会也命令下别人,因为到他这里盘子已经只有一个了)。

  4、到此任务下交完成,到各司其职完成的时候了。完成回推了:

第64个和尚移动第1个盘子,把它移开,然后第63个和尚移动他给自己分配的第2个盘子。
第64个和尚再把第1个盘子移动到第2个盘子上。到这里第64个和尚的任务完成,第63个和尚完成了第62个和尚交给他的任务的第一步。

  从上面可以看出,只有第64个和尚的任务完成了,第63个和尚的任务才能完成,只有第2个和尚----第64个和尚的任务完成后,第1个和尚的任务才能完成。这是一个典型的递归问题。 现在我们以有3个盘子来分析:

第1个和尚命令:

          ① 第2个和尚你先把第一柱子前2个盘子移动到第二柱子。(借助第三个柱子)

          ② 第1个和尚我自己把第一柱子最后的盘子移动到第三柱子。

          ③ 第2个和尚你把前2个盘子从第二柱子移动到第三柱子。

   很显然,第二步很容易实现(哎,人总是自私地,把简单留给自己,困难的给别人)。

其中第一步,第2个和尚他有2个盘子,他就命令:

          ① 第3个和尚你把第一柱子第1个盘子移动到第三柱子。(借助第二柱子)

          ② 第2个和尚我自己把第一柱子第2个盘子移动到第二柱子上。

          ③ 第3个和尚你把第1个盘子从第三柱子移动到第二柱子。

   同样,第二步很容易实现,但第3个和尚他只需要移动1个盘子,所以他也不用在下派任务了。(注意:这就是停止递归的条件,也叫边界值)

第三步可以分解为,第2个和尚还是有2个盘子,命令:

          ① 第3个和尚你把第二柱子上的第1个盘子移动到第一柱子。

          ② 第2个和尚我把第2个盘子从第二柱子移动到第三柱子。

          ③ 第3个和尚你把第一柱子上的盘子移动到第三柱子。
                   
分析组合起来就是:1→3 1→2 3→2 借助第三个柱子移动到第二个柱子 |1→3 自私人留给自己的活| 2→1 2→3 1→3借助第一个柱子移动到第三个柱子|共需要七步。

如果是4个盘子,则第一个和尚的命令中第1步和第3步各有3个盘子,所以各需要7步,共14步,再加上第1个和尚的1步,所以4个盘子总共需要移动 7+1+7=15步,同样,5个盘子需要15+1+15=31步,6个盘子需要31+1+31=64步……由此可以知道,移动n个盘子需要(2的n次 方)-1步。

   从上面整体综合分析可知把n个盘子从1座(相当第一柱子)移到3座(相当第三柱子):

(1)把1座上(n-1)个盘子借助3座移到2座。
     (2)把1座上第n个盘子移动3座。
(3)把2座上(n-1)个盘子借助1座移动3座。

下面用hanoi(n,a,b,c)表示把1座n个盘子借助2座移动到3座。

很明显:    (1)步上是 hanoi(n-1,1,3,2)
               (3)步上是 hanoi(n-1,2,1,3)
用C语言表示出来,就是:
#include <stdio.h>
int method(int n,char a, char b)
{
     printf("number..%d..form..%c..to..%c.."n",n,a,b);
     return 0;
}
int hanoi(int n,char a,char b,char c)
{
     if( n==1 ) move (1,a,c);
     else
          {
               hanoi(n-1,a,c,b);
               move(n,a,c);
               hanoi(n-1,b,a,c);
          };
     return 0;
}
int main()
{
     int num;
     scanf("%d",&num);
     hanoi(num,'A','B','C');
     return 0;
}

时间: 2024-11-18 09:18:45

对C语言中递归算法的深入解析的相关文章

对C语言中递归算法的深入解析_C 语言

许多教科书都把计算机阶乘和菲波那契数列用来说明递归,非常不幸我们可爱的著名的老潭老师的<C语言程序设计>一书中就是从阶乘的计算开始的函数递归.导致读过这本经书的同学们,看到阶乘计算第一个想法就是递归.但是在阶乘的计算里,递归并没有提供任何优越之处.在菲波那契数列中,它的效率更是低的非常恐怖. 这里有一个简单的程序,可用于说明递归.程序的目的是把一个整数从二进制形式转换为可打印的字符形式.例如:给出一个值4267,我们需要依次产生字符'4','2','6',和'7'.就如在printf函数中使用

c语言-C语言的递归算法,编译时会出现图中的数值,无论输什么数都是这个求和值

问题描述 C语言的递归算法,编译时会出现图中的数值,无论输什么数都是这个求和值 解决方案 首先这并不叫递归,递归是自己调用自己的意思. 这个程序的错误在于scanf格式说明里面不能有汉字 换成 scanf("%d",&n); 解决方案二: 你的程序首先没有用递归,其次scanf不要/n 解决方案三: 你这是一个循环程序, 另外你在你在要输入的数值前面输入和 %d 符号前面一样的串之后,输入数值再敲回车就可以了.不然你读到的值永远是0.

《领域特定语言》一3.4 解析中的数据

3.4 解析中的数据 当解析器执行时,它需要存储解析过程中的数据.这些数据可能是一个完整的语法树,但大多数情况下不是这样的.即使这种情况出现了,还是需要存储其他的一些数据,以便解析工作可以正常进行.解析本质上是一种树遍历(见图3-3),当处理某一部分DSL脚本时,对于正在处理的语法树分支,我们可以得到其上下文的一些相关信息.然而,通常我们还会用到这个分支以外的信息.我们再从状态机的例子里选取一段代码看看: commands unlockDoor D1UL end state idle actio

解析C语言中如何正确使用const_C 语言

基本解释 const是一个C语言的关键字,它限定一个变量不允许被改变.使用const在一定程度上可以提高程序的健壮性,另外,在观看别人代码的时候,清晰理解const所起的作用,对理解对方的程序也有一些帮助.虽然这听起来很简单,但实际上,const的使用也是c语言中一个比较微妙的地方,微妙在何处呢?请看下面几个问题. 问题: const变量 & 常量为什么我象下面的例子一样用一个const变量来初始化数组,ANSI C的编译器会报告一个错误呢?const int n = 5;int a[n]; 答

详细解析C语言中的开方实现_C 语言

关于C语言中的开方计算,首先想到的当然是sqrt()函数,让我们先来回顾一下它的基本用法: 头文件:#include <math.h> sqrt() 用来求给定值的平方根,其原型为: double sqrt(double x); 参数 x 为要计算平方根的值. 如果 x < 0,将会导致 domain error 错误,并把全局变量 errno 的值为设置为 EDOM. 返回值 返回 x 平方根. 注意,使用 GCC 编译时请加入-lm. 实例计算200 的平方根值. #include

感触C语言中的面向对象思想

经常听见别人说面向对象的程序设计,以前也有上过面向对象程序设计这门课.可是不幸的是,这些都是以C++,甚至VC++为基础的.而更加不幸的是,多年以来我一直是一个C的使用者.在学校的时候,我主要做的是硬件上的驱动层,和底层功能层. 在工作以后,又做的是手机上的软件开发,所有这些都是和C离不开的.虽然我不得不说,C++是一门很好的语言,但是它的编译速度,代码效率,编译后的代码大小都限制了它在嵌入式上的应用.(尽管现在的嵌入式CPU越来越快,内存容量变大,我觉得用C++也应该没有什么问题.这使我觉得似

Android中gson、jsonobject解析JSON的方法详解_Android

JSON的定义: 一种轻量级的数据交换格式,具有良好的可读和便于快速编写的特性.业内主流技术为其提供了完整的解决方案(有点类似于正则表达式 ,获得了当今大部分语言的支持),从而可以在不同平台间进行数据交换.JSON采用兼容性很高的文本格式,同时也具备类似于C语言体系的行为. JSON对象: JSON中对象(Object)以"{"开始, 以"}"结束. 对象中的每一个item都是一个key-value对, 表现为"key:value"的形式, ke

让你提前认识软件开发(19):C语言中的协议及单元测试示例

第1部分 重新认识C语言 C语言中的协议及单元测试示例   [文章摘要]         在实际的软件开发项目中,经常要实现多个模块之间的通信,这就需要大家约定好相互之间的通信协议,各自按照协议来收发和解析消息.        本文以实际的程序代码为例,详细介绍了如何用C语言来实现通信协议,并基于对协议字段的判断,说明了程序单元测试的过程,为相关的开发工作提供了有益的参考. [关键词]        软件开发  协议  单元测试  C语言  字段   一.软件模块之间的协议         什么

《Oracle PL/SQL程序设计(第5版)》一一2.6 在其他语言中调用PL/SQL

2.6 在其他语言中调用PL/SQL Oracle PL/SQL程序设计(第5版) 总有一天,你会在从C.Java.Perl.PHP或其他语言中调用PL/SQL.虽然这是一个很合理的需求,如果你曾经做过跨语言的开发工作,你一定熟知要把各种语言专有的数据类型糅合在一起─尤其是那些复合数据类型,比如数组.记录或者对象类型─的复杂性,更不用说不同的参数语法或者厂商对所谓"标准"应用编程接口(API)的扩展,比如微软的ODBC(Open Database Connectivity). 我会用几