神经网络:感知机和线性神经网络的实现

友情提示:本文系参考机械工业出版社《神经网络设计》(戴葵等译)一书而编制的相关程序,对于初学者或者想深入了解神经网络内核的爱好者,这是一本最具有阅读价值的教材。

感知机和线性神经网络是最简单和最基本的神经网络类型,但他们也有着广泛的应用。感知机和线性神经网络的学习规则相当的简单,对于感知机有:

对于线性神经网络有:

可以看出,两者有很多的相似,因此,编程中可以把两者的公共函数放在一个模块中,但注意感知机的传输函数是硬极限传输函数,而线性网络是采用的线性函数。

上式中,w表示的权值矩阵,P是我们的输入向量,e表示期望值和实际输出的误差,b表示的是偏置值。

理论上已经证明了,只要权值的解存在,那么感知机和线性网络总能收敛,但是什么情况下权值的解存在呢,这个其实也是感知机的局限所在:他只能对线性可分的对象进行划分。当然我们这里说的是单层的感知机。

在如今的众多软件中,有不少工具都以提供了神经网络工具箱,最方便的某过于matlab,这些工具使用方便、快捷,不过他们都把其实现的过程封装于底部,并且由于工具箱的庞大性,在某些实际的工程项目中我们无法直接移植他,所以自己动手实现其过程不仅能体验到知识的魅力,亦能对书本知识加以更加深刻的认识,何乐而不为呢。

时间: 2024-10-02 13:26:07

神经网络:感知机和线性神经网络的实现的相关文章

【何恺明最新论文】非局部神经网络,打造未来神经网络基本组件

大神 Kaiming He 日前在 arXiv 上新挂出来一篇论文,标题延续了一贯的简洁风格,叫做<非局部神经网络>(Non-local Neural Networks). 这是一篇 CMU 与 FAIR 合作的论文,第一作者是 CMU 的 Xiaolong Wang,其他两位作者是 Ross Girshick(DenseNet 作者之一)和 Abhinav Gupta(CMU 教授,他今年 CVPR + ICCV 一共发表了 15 篇论文). 摘要 卷积和递归运算都是一次处理一个局部邻域的基

matlab bp 神经网络-matlab实现BP神经网络,训练结果不好,附源代码

问题描述 matlab实现BP神经网络,训练结果不好,附源代码 希望大家看看,谢谢了!自己看了一整天都不知道哪里出现了问题,编程思想按照经典的机器学习的书 lr=0.05; %lr为学习速率:err_goal=0.1; %err_goal为期望误差最小值max_epoch=15000; %max_epoch为训练的最大次数:a=0.9; %a为惯性系数Oi=0;Ok=0; %置隐含层和输出层各神经元输出初值为0%提供两组训练集和目标值(3输入神经元,2输出)%X=[1 1;-1 -1;1 1];

(转)神经网络和深度学习简史(第一部分):从感知机到BP算法

    深度|神经网络和深度学习简史(第一部分):从感知机到BP算法 2016-01-23 机器之心 来自Andrey Kurenkov 作者:Andrey Kurenkov 机器之心编译出品 参与:chenxiaoqing.范娜Fiona.杨超.微胖.汪汪.赵巍   导读:这是<神经网络和深度学习简史>第一部分.这一部分,我们会介绍1958年感知机神经网络的诞生,70年代人工智能寒冬以及1986年BP算法让神经网络再度流行起来.   深度学习掀起海啸     如今,深度学习浪潮拍打计算机语言

学习笔记DL003:神经网络第二、三次浪潮,数据量、模型规模,精度、复杂度,对现实世界冲击

神经科学,依靠单一深度学习算法解决不同任务.视觉信号传送到听觉区域,大脑听学习处理区域学会"看"(Von Melchner et al., 2000).计算单元互相作用变智能.新认知机(Fukushima,1980),哺乳动物视觉系统结构,处理图片强大模型架构,现代卷积网络基础(LeCun et al., 1998c).神经网络基于整流线性单元(rectified linear unit)神经单元模型.原始认知机(Fukushima,1975)更复杂.简化现代版,Nair and Hi

转载 : 神经网络浅讲:从神经元到深度学习

神经网络是一门重要的机器学习技术.它是目前最为火热的研究方向--深度学习的基础.学习神经网络不仅可以让你掌握一门强大的机器学习方法,同时也可以更好地帮助你理解深度学习技术. 本文以一种简单的,循序的方式讲解神经网络.适合对神经网络了解不多的同学.本文对阅读没有一定的前提要求,但是懂一些机器学习基础会更好地帮助理解本文. 神经网络是一种模拟人脑的神经网络以期能够实现类人工智能的机器学习技术.人脑中的神经网络是一个非常复杂的组织.成人的大脑中估计有1000亿个神经元之多. 图1 人脑神经网络   那

【机器学习】人工神经网络(ANN)浅讲

神经网络是一门重要的机器学习技术.它是目前最为火热的研究方向--深度学习的基础.学习神经网络不仅可以让你掌握一门强大的机器学习方法,同时也可以更好地帮助你理解深度学习技术. 本文以一种简单的,循序的方式讲解神经网络.适合对神经网络了解不多的同学.本文对阅读没有一定的前提要求,但是懂一些机器学习基础会更好地帮助理解本文. 神经网络是一种模拟人脑的神经网络以期能够实现类人工智能的机器学习技术.人脑中的神经网络是一个非常复杂的组织.成人的大脑中估计有1000亿个神经元之多. 图1 人脑神经网络   那

人工神经网络简介

机器人2025本期导读 第一版: 人工神经网络简介 第二版: 受变色甲壳虫的启发,MIT研发可用于3D打印的机器人皮肤 第三版: 智享家 | 六年蛰伏,只为做一款好的机器人--大陆智源科技 高源 第四版: 数学专业经典读物 作者:fengbingchun 原文:http://blog.csdn.net/fengbingchun/article/details/50274471 一.人工神经网络的概念 人工神经网络(Artificial Neural Network,ANN)简称神经网络(NN),

一篇文章教你用 11 行 Python 代码实现神经网络

声明:本文是根据英文教程 A Neural Network in 11 lines of Python(用 11 行 Python 代码实现的神经网络)学习总结而来,关于更详细的神经网络的介绍可以参考我的另一篇博客:从感知机到人工神经网络. 如果你读懂了下面的文章,你会对神经网络有更深刻的认识,有任何问题,请多指教.   Very simple Neural Network 首先确定我们要实现的任务: 输出的为样本为 X 为 4*3,有 4 个样本 3 个属性,每一个样本对于这一个真实值 y,为

深度学习的这些坑你都遇到过吗?神经网络 11 大常见陷阱及应对方法

如果你的神经网络不工作,该怎么办?本文作者列举了搭建神经网络时可能遇到的11个常见问题,包括预处理数据.正则化.学习率.激活函数.网络权重设置等,并提供解决方法和原因解释,是深度学习实践的有用资料. 如果你的神经网络不工作,该怎么办?作者在这里列出了建神经网络时所有可能做错的事情,以及他自己的解决经验. 忘记规范化数据 忘记检查结果 忘记预处理数据 忘记使用正则化 使用的batch太大 使用了不正确的学习率 在最后层使用了错误的激活函数 你的网络包含了Bad Gradients 初始化网络权重不