R语言数据挖掘2.2.4.3 R语言实现

2.2.4.3 R语言实现

FP-growth算法的主要部分的R语言实现代码如下所示。

 

时间: 2024-09-25 22:08:23

R语言数据挖掘2.2.4.3 R语言实现的相关文章

《R语言数据挖掘》----1.7 为什么选择R

本节书摘来自华章出版社<R语言数据挖掘>一书中的第1章,第1.7节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问"华章计算机"公众号查看. 1.7 为什么选择R R是一种高质量.跨平台.灵活且广泛使用的开源免费语言,可用于统计学.图形学.数学和数据科学.它由统计学家创建,并为统计学家服务. R语言包含了5000多种算法以及全球范围内具备专业知识的数百万用户,并得到了充满活力且富有才华的社区贡献者的支持.

R语言数据挖掘

数据分析与决策技术丛书 R语言数据挖掘 Learning Data Mining with R [哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel) 著 李洪成 许金炜 段力辉 译 图书在版编目(CIP)数据 R语言数据挖掘 / (哈)贝特·麦克哈贝尔(Bater Makhabel)著:李洪成,许金炜,段力辉译. -北京:机械工业出版社,2016.9 (数据分析与决策技术丛书) 书名原文:Learning Data Mining with R ISBN 978-7-111-54769-

《R语言数据挖掘》----导读

Preface 前 言 世界各地的统计学家和分析师正面临着处理许多复杂统计分析项目的迫切问题.由于人们对数据分析领域的兴趣日益增加,所以R语言提供了一个免费且开源的环境,非常适合学习和有效地利用现实世界中的预测建模方案.随着R语言社区的不断发展及其大量程序包的不断增加,它具备了解决众多实际问题的强大功能. R编程语言诞生已经有数十年了,它已经变得非常知名,不但被社区的科学家而且被更广泛的开发者社区所熟知.它已经成长为一个强大的工具,可以帮助开发者在执行数据相关任务时生成有效且一致的源代码.由于R

《R语言数据挖掘》----第2章 频繁模式、关联规则和相关规则挖掘 2.1关联规则和关联模式概述

本节书摘来自华章出版社<R语言数据挖掘>一书中的第2章,第2.1节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问"华章计算机"公众号查看. 第2章 频繁模式.关联规则和相关规则挖掘 本章中,我们将首先学习如何用R语言挖掘频繁模式.关联规则及相关规则.然后,我们将使用基准数据评估所有这些方法以便确定频繁模式和规则的兴趣度.本章内容主要涵盖以下几个主题: 关联规则和关联模式概述 购物篮分析 混合关联规则挖掘

《R语言数据挖掘》----1.13 数据降维

本节书摘来自华章出版社<R语言数据挖掘>一书中的第1章,第1.13节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问"华章计算机"公众号查看. 1.13 数据降维 在分析复杂的多变量数据集时,降低维度往往是必要的,因为这样的数据集总是以高维形式呈现.因此,举例来说,从大量变量来建模的问题和基于定性数据多维分析的数据挖掘任务.同样,有很多方法可以用来对定性数据进行数据降维. 降低维度的目标就是通过两个或者多

《R语言数据挖掘》——2.2 购物篮分析

本节书摘来自华章出版社<R语言数据挖掘>一书中的第2章,第2.2节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问"华章计算机"公众号查看. 2.2 购物篮分析 购物篮分析(Market basket analysis)是用来挖掘消费者已购买的或保存在购物车中物品组合规律的方法.这个概念适用于不同的应用,特别是商店运营.源数据集是一个巨大的数据记录,购物篮分析的目的发现源数据集中不同项之间的关联关系. 2

《R语言数据挖掘》----1.10 数据属性与描述

本节书摘来自华章出版社<R语言数据挖掘>一书中的第1章,第1.10节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问"华章计算机"公众号查看. 1.10 数据属性与描述 属性(attribute)是代表数据对象的某些特征.特性或者维度的字段. 在大多数情况下,数据可以用矩阵建模或者以矩阵形式表示,其中列表示数据属性,行表示数据集中的某些数据记录.对于其他情况,数据不能用矩阵表示,比如文本.时间序列.图像.

《R语言数据挖掘》----1.2 数据源

本节书摘来自华章出版社<R语言数据挖掘>一书中的第1章,第1.2节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问"华章计算机"公众号查看. 1.2 数据源 数据充当数据挖掘系统的输入,因此数据存储库是非常重要的.在企业环境中,数据库和日志文件是常见来源:在网络数据挖掘中,网页是数据的来源:连续地从各种传感器中提取数据也是典型的数据源. 这里有一些免费的在线数据源十分有助于学习数据挖掘: 频繁项集挖掘数据

《R语言数据挖掘》----1.3 数据挖掘

本节书摘来自华章出版社<R语言数据挖掘>一书中的第1章,第1.3节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问"华章计算机"公众号查看. 1.3 数据挖掘 数据挖掘就是在数据中发现一个模型,它也称为探索性数据分析,即从数据中发现有用的.有效的.意想不到的且可以理解的知识.有些目标与其他科学,如统计学.人工智能.机器学习和模式识别是相同的.在大多数情况下,数据挖掘通常被视为一个算法问题.聚类.分类.关联

《R语言数据挖掘》——1.4 社交网络挖掘

本节书摘来自华章出版社<R语言数据挖掘>一书中的第1章,第1.4节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问"华章计算机"公众号查看. 1.4 社交网络挖掘 正如我们前面提到的,数据挖掘是从数据中发现一个模型,社交网络挖掘就是从表示社交网络的图形数据中发现模型. 社交网络挖掘是网络数据挖掘的一个应用,比较流行的应用有社会科学和文献计量学.PageRank和HITS算法.粗粒度图模型的不足.增强模型和