c++ 尽量不要使用#define 而是用const、enum、inline替换。_C 语言

例如:这里程序文件开头有如下#define语句

复制代码 代码如下:

#define N 10
#define PI 3.14
#define MAX 10000
#define Heigth 6.65
...
...

假设这里程序运行出错误,而且就是在我们使用这些常量有错误,此时编辑器应该会抛出错误信息。如果该信息提示6.65这里有错误,Ok如果你运气好你正好记得或者程序简单一眼能找到6.65表示什么,如果程序很复杂,而且报出6.65的文件是引用该文件,不记得,那么你会困惑这是什么?或许会花大量时间去追踪6.65是什么?进而定位问题。
为什么错误信息是6.65呢?而不是Heith呢?因为在预编译阶段,已经用5.65来代替Heigth,Height没有进入记号表(system table)内。解决之道是可以使用下面语句进行替换
const double treeHeight=5.68;
   作为一个语言常量,treeHeight肯定会被编译器获知,并且进入记号表内。报出的错误不在是数字而是变量名称,这样有利于定位问题。
这里特别说明一下常量替换#define有两种特殊情况。
   第一个是定义常量指针。这里要将指针定义为常量指针,同时该指针也是指向一个常量,所以是下面的形式:
const char * const HZ="Hang Zhou";
在C++中最好使用string对象来替换掉char*形式:
const std::string HZ ("Hang Zhou");
第二个值得注意的就是class专属常量。首先将作用于限制到类内,必须将其声明为其成员。其次确保此常量至多只有一份实体,必须让它称为static成员。例如:

复制代码 代码如下:

class People
{
private:
static const int Number=10;
int phoneNumbers[Number];
......
}

这看到的是声明式,而非定义式。通常C++要求你对使用的任何东西提供一个定义式。 或者使用enum,对于形式函数的宏,尽可能用inline或者template来代替。但是如果它是个class专属常量又是static且为整数类型(int,char,bool)则需特殊处理。只要不娶它们地址,则只用声明而不用提供定义式子。但是如果取class专属常量地址,纵使不取其地址编译器就要你提供定义式子。
static const int People::Number
这里定义不设初始值,是因为声明的时候已经获取了初值。

这里可以使用enum完成类似的功能

复制代码 代码如下:

class People
{
private:
enum { Number = 10 };
int phoneNumbers[Number];
....
}

enum比较像#define而不像const。因为取const的地址是合法的,取一个enum的地址就不合法,取#define地址通常就不合法。所以可以通过enum来实现不让他人取得某个常量的地址。

下面介绍一道笔试题目

复制代码 代码如下:

#define PRODUCT(a,b) a*b
....
int a=5,b=3,c;
c=PRODUCT(a+3,b+4);

那么c的值为多少?c=5+3*3+4=18而不是程序员预想的56,如果想达到预期的结果必须这样写

#define PRODUCT(a,b) ((a)*(b))
或许这样你还会坚持会写宏函数,因为你想说只用写一个宏函数就能完成int,flaot,double等类型的乘积运算。那么在看看下面例子

#define MAX(a,b) ((a)>(b)?(a):(b))

int a=5,b=3

MAX(++a,b); //a被加了两次

MAX(++a,b+4); //a被加了一次
a被加的结果可能不是预期的,完全可以用template inline函数达到宏的预期效果,并且效率与宏差不多。

复制代码 代码如下:

template<typename T>
inline void Max(const T& a,const T& b)
{
f(a>b?a:b);
}

inline函数是一种编译机制,有点从代码上是看不出来的,但是从程序的执行效率上有差别,通常编译器对函数调用的处理是一种类似中断的方式,即当执行到函数调用语句时,会将当前所有信息存储到寄存器中,在去执行函数的代码,执行完后取回寄存器值,恢复到调用函数开始的状态,继续执行代码。声明为 inline 函数后,编译器不把函数编译成调用函数而是将代码拷贝到被调用的地方。所以效率上要比普通函数高一些,少了存寄存器与取寄存器信息的步骤。
另外需要注意的是inline函数最好写到.h文件中去,或者直接写到类中去。
const允许程序员指定一个语义约束,即不能被改动,编译器会强制实施这项约束。它表示被它修饰的值是不变的。const可以在classes外部修饰global或namespace作用域中的常量,或修饰文件、函数或者static对象以及指针。在const应用在指针中要注意关键字const出现在“*”的什么地方,如果在左边表示被指向的值是常量,如果在右边表示指针自身是常量。出现两边表示两者的功能的并集。这里特别说以下几点:
(1)迭代器中的cosnt
const std::vector<int>::iterator iter=vec.begin(); //相当于iter不能改变

std::vector<int>::const_iterator citer=vec.begin(); //iter所指向的内容无法改变
(2)将函数返回值声明为常量,不仅可以降低因程序员错误造成的不可预料的情况,并且不用放弃安全性和高效性。例如:

const operater *(const &lhs,const &rhs);
if((a * b = c);//本意是if(a*b==c)因程序员马虎而写成这样
如果a和b都是内置类型,此代码就不合理,但是是我们自定义类型,就可能行得通,如果声明返回值是cosnt,就可以预防这么做了。

(3)const成员函数,它是为了确认成员函数可作用于const对象。而且两个成员函数如果只是常量性不同,是可以重载的。成员函数后面跟const,表示该函数不能更改类的成员变量(下面有代码验证,如果尝试对其成员赋值,编译器会爆出错误)。原理就是编译器将其认为是只读变量。并且大多数const对象用于引用传递或者指针传递。

复制代码 代码如下:

#include <iostream>
#include <string>

class People
{
public:
People():m_sName(""),m_iAge(0){}
People(std::string name,int age):m_sName(name),m_iAge(age){}
void set(int age)
{
this->m_iAge=age;
}

void set2(int age) const
{
this->m_iAge=age;
}

int get()
{
return this->m_iAge;
}
private:
std::string m_sName;
int m_iAge;
};

int main(int argc,char **argv)
{
People* p=new People("sky",8);
p->set(10);
std::cout<<p->get()<<std::endl;
p->set2(12);
std::cout<<p->get()<<std::endl;
delete p;
return 0;
}

编译该文件会报以下错误信息
const_test.cpp: In member function `void People::set2(int) const':
const_test.cpp:16: error: assignment of data-member `People::m_iAge' in read-only structure
const_test.cpp:36:2: warning: no newline at end of file
cosnt重载(注意:仅当形参是引用或者指针时候,形参是否为const才会有影响)。可以试一试我们将下面代码的&去掉,传入const_int其实调用的是void set(int age)函数,说明形参的const是没有起作用的。下面是验证代码

复制代码 代码如下:

#include <iostream>
#include <string>
class People
{
public:
People():m_sName(""),m_iAge(0){}
People(std::string name,int age):m_sName(name),m_iAge(age){}
void set(const int& age) const
{
std::cout<<"this is const"<<std::endl;
}

void test(int& age)
{
std::cout<<"this is non-const"<<std::endl;
}

void test(short age)
{
std::cout<<"this is non-const"<<std::endl;
}

int get()
{
return this->m_iAge;
}
private:
std::string m_sName;
int m_iAge;
};

int main(int argc,char **argv)
{
People* p=new People("sky",8);
const int const_int=12;
p->test(const_int);
std::cout<<p->get()<<std::endl;
delete p;
}

(4)关于重载函数代码重复的问题。由经验可以得出我们通过const重载的函数往往有大量的代码是重复,甚至是一样的。如果大部分重复代码,我们可以将这些重复的代码写成一个函数,在由它们分别调用。如果是一样的,如下代码,我们就可以在non-const函数中调用const函数,来解决代码重复。

复制代码 代码如下:

class People
{
public:
People():m_sName(""),m_iAge(0){}
People(std::string name,int age):m_sName(name),m_iAge(age){}
void eat(const People & Person) const
{
std::cout<<"this person info is:{age ="<<Person.m_iAge()<<",name ="<<Person.m_sName()<<std::endl;
std::cout<<"eating"<<std::endl;
std::cout<<"end"<<std::endl;
}

void eat ( People & Person)
{
std::cout<<"this person info is:{age ="<<Person.m_iAge()<<",name ="<<Person.m_sName()<<std::endl;
std::cout<<"eating"<<std::endl;
std::cout<<"end"<<std::endl;
}
private:
std::string m_sName;
int m_iAge;
};

然后在non-const eat函数中首先将*this类型由People&显示的转化为const People&让其调用const函数,即函数重载

复制代码 代码如下:

#include <iostream>
#include <string>
class People
{
public:
People():m_sName(""),m_iAge(0){}
People(std::string name,int age):m_sName(name),m_iAge(age){}
void eat(const People & Person) const
{
std::cout<<"this person info is:{age ="<<Person.m_iAge<<",name ="<<Person.m_sName<<"}"<<std::endl;
std::cout<<"eating"<<std::endl;
std::cout<<"end"<<std::endl;
}

void eat(People & Person)
{
static_cast<const People&>(*this).eat(Person);
}
private:
std::string m_sName;
int m_iAge;
};

int main(int argc,char **argv)
{
People Person("sky",8);
Person.eat(Person);
}

运行的结果为

this person info is:{age =8,name =sky
eating
end

时间: 2024-09-20 05:37:28

c++ 尽量不要使用#define 而是用const、enum、inline替换。_C 语言的相关文章

Define,const,static用法总结_C 语言

1.Define用法:define主要是用于宏常量定义的,使程序看起来更简洁明了,方便代码维护,#define定义的实质只是一个常数的名字,没有具体数据类型的,没有分配内存空间.在编译是会被编译器替换为该常数.每次使用该宏定义,就要进行编译并分配空间,若一个程序中多次使用define定义的数据,则就会有多份拷贝.这么做是为了提高程序的可读性,但安全性相对差点. 2.const用法:const定义的全局数据变量,其基本作用和define相同,但又在define的基础上增加了好多功能.const定义

详解C语言中const关键字的用法_C 语言

关键字const用来定义常量,如果一个变量被const修饰,那么它的值就不能再被改变,我想一定有人有这样的疑问,C语言中不是有#define吗,干嘛还要用const呢,我想事物的存在一定有它自己的道理,所以说const的存在一定有它的合理性,与预编译指令相比,const修饰符有以下的优点: 1.预编译指令只是对值进行简单的替换,不能进行类型检查 2.可以保护被修饰的东西,防止意外修改,增强程序的健壮性 3.编译器通常不为普通const常量分配存储空间,而是将它们保存在符号表中,这使得它成为一个编

C和C++ const的声明差异_C 语言

当在C源代码文件中将变量声明为const时,可以通过以下方式实现: const int i = 2; 然后,可以在另一个模块中使用此变量,如下表示: extern const int i; 但若要获取与 C++ 中相同的行为,则必须将 const 变量声明为: extern const int i = 2; 如果希望在 C++ 源代码文件声明用于 C 源代码文件的 extern 变量,请使用: extern "C" const int x = 10; 以防止 C++ 编译器进行名称重整

C++ 中const和复合类型_C 语言

1.const和引用 可以把引用绑定在常量上,称之为,对常量的引用.不能对那个引用赋值. 如: const int ci = 1024; const int &ri = ci; 解读:ri是对ci的引用.ri的const意思是视ci为变量. 对于常量,只能使用"对常量的引用"这个引用方式 int &ri = ci;是错误的,因为ci不能赋值,但是可能会对ri赋值从而影响const限定. 所以,他们(制定标准的人)创造了 对常量的引用 的 引用方式. 下面高能!!! 上面

C++类中的static和const用法实例教程_C 语言

static和const是C++程序设计中非常重要的概念,本文实例列举了C++类中的static和const的规则和用法.供大家参考借鉴.具体说明如下: 首先以代码用来举例说明.示例代码如下: class A { public: A():m(10) //const成员必须在构造函数的初始化构造列表中初始化 { q = 40; } void fun1()const { m++; //错误.const成员是常量,不能改变其值. n++; //正确.static变量n属于类,但是每个对象的函数都可以访

总结C语言中const关键字的使用_C 语言

什么是const? 常类型是指使用类型修饰符const说明的类型,常类型的变量或对象的值是不能被更新的.(当然,我们可以偷梁换柱进行更新:) 为什么引入const? const 推出的初始目的,正是为了取代预编译指令,消除它的缺点,同时继承它的优点. const关键字使用非常的灵活,这一点和php差别很大,php中const用来在类中定义一个常量,而在c中,const因位置不同有不同的作用,因情景不同有不同的角色,使用起来也是非常的灵活. (1):const用来修饰普通的变量(指针变量除外)的时

详解C++中的const关键字及与C语言中const的区别_C 语言

const对象默认为文件的局部变量,与其他变量不同,除非特别说明,在全局作用域的const变量时定义该对象的文件局部变量.此变量只存在于那个文件中中,不能别其他文件访问.要是const变量能在其他文件中访问,必须显示的指定extern(c中也是)   当你只在定义该const常量的文件中使用该常量时,c++不给你的const常量分配空间--这也是c++的一种优化措施,没有必要浪费内存空间来存储一个常量,此时const int c = 0:相当于#define c 0:    当在当前文件之外使用

C++中const的实现机制深入分析_C 语言

问题 C语言以及C++语言中的const究竟表示什么?其具体的实现机制又是如何实现的呢? 本文将对这两个问题进行一些分析,简单解释const的含义以及实现机制. 问题分析 简单的说const在C语言中表示只读的变量,而在C++语言中表示常量.关于const在C与C++语言中的使用以及更多的区别,以后有时间另开一贴说明. 那么const究竟是如何实现的呢? 对于声明为const的内置类型,例如int,short,long等等,编译器会如何实现const的本意?那么对于非内置类型是否也是与内置数据类

C++中const用法小结_C 语言

const在C++中使用十分广泛,不同位置使用的意义也不尽相同,所以想写篇文章对其做一个总结. 首先,明确const是"不变"这个基本意义,但是不变不意味着什么都不变,下面将会看到. 1. const与变量 基本原则:const变量(对象)不能被修改 const在变量中的引入和魔数有关,所谓"魔数"指的是突然出现的一个常量值(也叫字面值常量). for(int i = 0; i < 512; i++) { // todo } 上例中,512即为魔数,512突然