【Spark Summit East 2017】Spark SQL:Tungsten之后另一个可以达到16倍速度的利器

本讲义出自Brad Carlile在Spark Summit East 2017上的演讲,主要介绍了Oracle公司的创新产品:Spark SQL,并介绍了使用Spark SQL创新特性以及在Spark ML生成的新特性,并探讨了工作负载在规模和复杂的相互作用,最后还介绍了最佳实践和调优建议。

时间: 2024-09-30 16:54:32

【Spark Summit East 2017】Spark SQL:Tungsten之后另一个可以达到16倍速度的利器的相关文章

【Spark Summit East 2017】将Apache Spark MLlib扩展至十亿级别的参数

本讲义出自Yanbo Liang在Spark Summit East 2017上的演讲,主要介绍了为了应对像广告点击率预测和神经网络这样的应用程序需要从大量的数据中获取数十亿参数的挑战而研发的MLlib自由向量L-BFGS,它能解决Spark SQL框架中训练集经常产生的数十亿参数问题,演讲中展示了通过自由向量L-BFGS进行逻辑回归来满足真实世界的数据集和需求,并分享了如何将这种方法用于其他的机器学习算法.

【Spark Summit East 2017】R与Spark:如何使用RStudio的 Sparklyr和H2O的 Rsparkling分析数据

本讲义出自Nathan Stephens在Spark Summit East 2017上的演讲,Sparklyr是一个让你在Spark中进行数据分析就像在R开发环境下进行数据分析的R语言包,Sparklyr 支持处理数据帧对象的常用工具dplyr的完整后端,你可以使用dplyr将R代码翻译成Spark SQL,Sparklyr还支持MLlib,所以你可以在分布式数据集上运行分类器以及回归.聚类.决策树等机器学习算法,讲义中演示了如何使用Sparklyr和Rsparkling分析数据.

【Spark Summit East 2017】Stitch Fix从Redshift迁移到Spark的实践

本讲义出自Sky Yin在Spark Summit East 2017上的演讲,数据科学家每天都会编写SQL查询语句,通常情况下,他们知道如何编写正确的查询语句,但不知道为什么他们的查询执行却是缓慢的,所以需要对于SQL查询进行优化,本讲义将介绍如何将一个大表从Redshift迁移到Spark上.

【Spark Summit East 2017】深度探究Spark + Parquet

本讲义出自Emily Curtin and Robbie Strickland在Spark Summit East 2017上的演讲,主要介绍了使用Spark + Parquet构建的非常之快.存储高效.查询也高效的数据湖以及与之相匹配的一系列工具.演讲分享了Parquet是如何工作的以及如何从Tungsten得改进并使得SparkSQL可以利用这样的设计克服分布式分析中的两大瓶颈:通信成本和数据解码,并提供快速查询的.

【Spark Summit East 2017】使用Spark RDD构建用户应用

本讲义出自Tejas Patil在Spark Summit East 2017上的演讲,主要介绍了与SQL类的Hive相比,使用Spark RDD API开发用户应用的几个优点,并介绍了如何进行数据分布,避免数据倾斜,如何优化特定于应用程序的优化以及建立可靠的数据管道,为了说明以上的优点,Tejas Patil在演讲中展示了原本基于Hive的经过重新设计基于Spark的大规模复杂语言训练模型管道.

【Spark Summit East 2017】Opaque:强安全性的数据分析平台

更多精彩内容参见大数据频道https://yq.aliyun.com/big-data:此外,通过Maxcompute及其配套产品,低廉的大数据分析仅需几步,详情访问https://www.aliyun.com/product/odps. 本讲义出自Marius van Niekerk在Spark Summit East 2017上的演讲,随着企业转向以云计算为基础进行数据分析,云安全漏洞的风险构成了严重的威胁.对数据进行加密是数据传输中的第一步,然而却必须在内存中进行解密,这就有可能暴露在被黑

【Spark Summit East 2017】不必犹豫,使用Spark 2.0结构化流

本讲义出自Michael Armbrust在Spark Summit East 2017上的演讲,在Spark 2.0中,引入了结构化的流,它允许用户不断地.增量地随着数据的增加而改变对于世界的看法,并且Spark 2.0仍然保持了Spark SQL的相同性,Michael Armbrust主要分享了他们在引入结构化的流之后,在在健壮性.延迟.表现力和可观察性所取得的进展.

【Spark Summit East 2017】使用Spark, Kafka和Elastic Search的大规模预测

本讲义出自Jorg Schad在Spark Summit East 2017上的演讲,主要介绍了使用Spark, Kafka和Elastic Search的大规模预测的方法以及案例,并分享了分布式计算以及数据分析预测应用的架构设计思想.

【Spark Summit East 2017】Apache Toree:Spark的一种Jupyter内核

本讲义出自Marius van Niekerk在Spark Summit East 2017上的演讲,主要介绍了Toree的设计思想,Toree如何与Jupyter生态系统交互,以及用户如何借助强大的插件系统来扩展Apache Toree的功能. 目前许多数据科学家已经在利用Jupyter生态系统并进行数据分析,正在孵化中的Apache Toree是设计用于作为Spark网关,Apache Toree能让用户遵守Jupyter标准,这将允许用户非常简单地将Spark集成到已有的Jupyter生态