移动App性能测评与优化1.4.1 从物理内存到应用

1.4.1 从物理内存到应用

我们首先要了解系统的内存机制,搞清楚物理内存是如何被分配到各个进程的,以及共享内存的机制,等等,理解这些机制对测试及优化都会有很大帮助。

根据Google提供的Android整体架构图,如图1-17所示,可以看到Android系统是基于Linux内核的,因此底层的内存分配及共享机制与Linux基本相同。但由于Android是为移动设备设计的,所以整套架构为了符合移动设备的特性,需要有较低的内存及能耗需求。因此Android只使用了Linux内核,不使用传统Linux系统的组件。这些组件虽然功能强大,但是较为消耗系统资源。Google开发了若干较小的组件,例如将庞大的glibc换为bionic库,使用SQLite数据库等。Android还扩充了许多内核机制和实现,其中对内存影响较大的是Ashmem和Binder机制。

在Ashmem及COW(Copy-On-Write)机制的基础上,Android进程最明显的内存特征是与zygote共享内存。为了加快启动速度及节约内存,Android应用的进程都是由zygote fork出来的。由于zygote已经载入了完整的Dalvik虚拟机和Android 应用框架的代码,fork出的进程和zygote共享同一块内存,这样就节约了每个进程单独载入的时间和内存。应用进程只需载入自己的Dalvik字节码及资源就可以开始工作。

 

 

 

图1-17 Android架构图

综上所述,一个在运行的Android应用进程会包含以下几个部分:

Dalvik虚拟机代码(共享内存)

应用框架的代码(共享内存)

应用框架的资源(共享内存)

应用框架的so库(共享内存)

应用的代码(私有内存)

应用的资源(私有内存)

应用的so库(私有内存)

堆内存,其他部分(共享/私有)

有了整体视角后,我们再开始深入观察某一个应用的内存情况。在之前的测试中,我们使用系统提供的dumpsys meminfo工具来观察内存值。它能够将不同的内存消耗分类统计,输出成便于查看的格式。

但如果我们想细致地研究各部分内存的由来,只靠这个工具是不够的,我们有必要按照系统划分各部分的方式来理解和分析内存。

通过阅读和分析dumpsys meminfo的代码,我们能够了解到Android是如何划分各部分内存的。下面详细讲解dumpsys meminfo工具是如何统计各部分内存值的。

时间: 2024-08-04 02:32:03

移动App性能测评与优化1.4.1 从物理内存到应用的相关文章

移动App性能测评与优化导读

前 言 Preface 写作背景 当前移动设备越来越多地涌现在我们日常生活中,像网络购物.充值缴费.新闻资讯.理财.团购.车辆保养等都可以通过移动设备来搞定.通过移动设备可以帮助人们更便捷高效地完成很多事,同时越来越多的需求也希望能通过移动设备来完成,这样也催生了很多工作机会,让IT技术人员能开发更多的App来满足不同用户的不同需求.相对于传统PC,移动设备有其自身的特点,如屏幕小.移动网络复杂且需要收费.电量有限等.因此,在完成用户一系列需求的背后,我们也面临一系列的问题.比如说,如何能保证开

移动App性能测评与优化2.1.2 软件测试

2.1.2 软件测试 上面一节讲述的都是从整机层面去量化并控制手机功耗,相比做App的公司来说做手机ROM的厂商较少.那么从应用的性能优化出发,上面讲述的硬件测试方法就不那么实用了,原因如下: 每个App本身的耗电是微量的,硬件测试方法中仪器本身波动可能无法体现App的功耗: 硬件测试方法只能通过测试整机功耗来体现App耗电,而这样很难避免其他App影响测试结果. 为了解决这个问题,MIG专项测试组从分析Android系统电量统计原理入手,并结合在实际项目中对耗电优化做的工作,来分享下对App功

移动App性能测评与优化1.3.2 问题所在

1.3.2 问题所在 在了解DVM分配释放内存的机制后,根据dumpsys观察到的现象,猜测可能出现了页利用率问题(页内碎片).如图1-13所示,第一行:在开始阶段,内存分配较满.第二行:经过GC(垃圾回收)后,大部分对象被释放,少部分留下来.   图1-13 产生内存碎片 这种情况下可能会产生的问题是,整页的4KB内存中可能只有一个小对象,但统计PrivateDirty/Pss时还是按4KB计算. 在通常的JVM中,借助Compacting GC机制,整理内存对象,将散布的内存移动到一起.但根

移动App性能测评与优化1.4.2 smaps

1.4.2 smaps 由于Android底层基于Linux内核,进程内存信息也和Linux一致,所以Dalvik Heap之外的信息都能够从/proc/<pid>/smaps中取得. 在smaps中,列出了进程的各个内存区域,并根据分配的不同用途做标识,以下是root用户使用cat /proc/<pid>/smaps的一个例子: 788c2000-789bf000 rw-p 00000000 00:00 0          [stack:5113] Size:         

移动App性能测评与优化1.6 本章小结

1.6 本章小结 在这一章里,我们通过对几个案例的分析,基本了解了Android应用的各种内存组成,以及这些成分是如何被消耗的,也总结出了一些节约和优化内存的经验.在这一小节里我们把经验都列出来供读者参考. 内存的主要组成索引: Native Heap:Native代码分配的内存,虚拟机和Android框架本身也会分配 Dalvik Heap:Java代码分配的对象 Dalvik Other:类的数据结构和索引 so mmap:Native代码和常量 dex mmap:Java代码和常量 内存工

移动App性能测评与优化1.5.4 dex文件优化

1.5.4 dex文件优化 为了达到优化的目的,我们需要先了解dex文件的结构.dex文件结构如表1-2所示. 表1-2 dex文件结构 区 域  描 述  内 容 Header             索引区  String Id list 指向Data的偏移量         Type Id list             Method Prototype Id list             Field Id list              Method Id list      

移动App性能测评与优化1.5 案例:优化dex相关内存

1.5 案例:优化dex相关内存 上一节提到,随着代码功能的增加,代码复杂度也在不断地变大,这时我们往往会发现Dalvik Other和Dex Mmap这两部分消耗的内存也在不断增加.在之前的例子里,我们知道这两部分的内存已经接近总内存的一半.在Dalvik Heap已经充分优化的情况下,我们有必要继续研究这部分内存如何优化. 我们已经知道Dalvik Other存放的是类的数据结构及关系,而Dex Mmap是类函数的代码和常量.通常情况下,要减少这部分内存,需要从代码出发,精简无用代码,或者将

移动App性能测评与优化2.1.1 硬件测试

2.1.1 硬件测试 方法1:通过Android API获取,代码如下: registerReceiver(receiver, new IntentFilter(Intent.ACTION_BATTERY_CHANGED)): 这种方法的缺点:获取手机整机耗电,实时性差精度小(只能监控电池电量剩余量和跳变),测试工具本身的性能消耗,手机休眠后无法持续监测. 方法2:通过读取系统电池传感器设备节点. /sys/class/power_supply/battery/uevent 这种方法的缺点是:测

移动App性能测评与优化1.2.1 测试流程

1.2.1 测试流程 由于内存测试属于性能测试,Android系统又和Linux有很多相通之处,因此我们可以参考常见的Linux性能测试方法和指标,来制定客户端性能测试方案.常见的测试方法包括Monkey/UIAutomator类的常规压力测试.大数据/操作的峰值压力测试.长时间运行的稳定性测试等.这些方法都可以叠加在内存测试的方案中,观察这类场景下的应用内存情况,经常能够发现类似内存泄漏或OOM的问题. 参考了常见性能测试的方案,以及总结了以往对内存性能测试的经验后,我们总结出了一套进行内存测