【转载】高并发的核心技术-幂等的实现方案

原文地址:http://blog.csdn.net/rdhj5566/article/details/50646599

一、背景 
我们实际系统中有很多操作,是不管做多少次,都应该产生一样的效果或返回一样的结果。 
例如:
 

1. 前端重复提交选中的数据,应该后台只产生对应这个数据的一个反应结果。 
2. 我们发起一笔付款请求,应该只扣用户账户一次钱,当遇到网络重发或系统bug重发,也应该只扣一次钱; 
3. 发送消息,也应该只发一次,同样的短信发给用户,用户会哭的; 
4. 创建业务订单,一次业务请求只能创建一个,创建多个就会出大问题。 

等等很多重要的情况,这些逻辑都需要幂等的特性来支持。 

二、幂等性概念 
幂等(idempotent、idempotence)是一个数学与计算机学概念,常见于抽象代数中。 

在编程中.一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同。幂等函数,或幂等方法,是指可以使用相同参数重复执行,并能获得相同结果的函数。这些函数不会影响系统状态,也不用担心重复执行会对系统造成改变。例如,“getUsername()和setTrue()”函数就是一个幂等函数. 

更复杂的操作幂等保证是利用唯一交易号(流水号)实现. 

我的理解:幂等就是一个操作,不论执行多少次,产生的效果和返回的结果都是一样的 

三、技术方案 
1. 查询操作 
查询一次和查询多次,在数据不变的情况下,查询结果是一样的。select是天然的幂等操作 

2. 删除操作 
删除操作也是幂等的,删除一次和多次删除都是把数据删除。(注意可能返回结果不一样,删除的数据不存在,返回0,删除的数据多条,返回结果多个) 

3.唯一索引,防止新增脏数据 
比如:支付宝的资金账户,支付宝也有用户账户,每个用户只能有一个资金账户,怎么防止给用户创建资金账户多个,那么给资金账户表中的用户ID加唯一索引,所以一个用户新增成功一个资金账户记录 

要点: 
唯一索引或唯一组合索引来防止新增数据存在脏数据 
(当表存在唯一索引,并发时新增报错时,再查询一次就可以了,数据应该已经存在了,返回结果即可)
 

4. token机制,防止页面重复提交 
业务要求: 
页面的数据只能被点击提交一次 
发生原因: 
由于重复点击或者网络重发,或者nginx重发等情况会导致数据被重复提交 
解决办法: 
集群环境:采用token加redis(redis单线程的,处理需要排队) 
单JVM环境:采用token加redis或token加jvm内存 
处理流程: 
1. 数据提交前要向服务的申请token,token放到redis或jvm内存,token有效时间 
2. 提交后后台校验token,同时删除token,生成新的token返回 
token特点: 
要申请,一次有效性,可以限流 

注意:redis要用删除操作来判断token,删除成功代表token校验通过,如果用select+delete来校验token,存在并发问题,不建议使用 

5. 悲观锁 
获取数据的时候加锁获取 
select * from table_xxx where id='xxx' for update; 
注意:id字段一定是主键或者唯一索引,不然是锁表,会死人的 
悲观锁使用时一般伴随事务一起使用,数据锁定时间可能会很长,根据实际情况选用
 

6. 乐观锁 
乐观锁只是在更新数据那一刻锁表,其他时间不锁表,所以相对于悲观锁,效率更高。 

乐观锁的实现方式多种多样可以通过version或者其他状态条件: 
1). 通过版本号实现 
update table_xxx set name=#name#,version=version+1 where version=#version# 
如下图(来自网上): 

 

2). 通过条件限制 
update table_xxx set avai_amount=avai_amount-#subAmount# where avai_amount-#subAmount# >= 0 
要求:quality-#subQuality# >= ,这个情景适合不用版本号,只更新是做数据安全校验,适合库存模型,扣份额和回滚份额,性能更高 

注意:乐观锁的更新操作,最好用主键或者唯一索引来更新,这样是行锁,否则更新时会锁表,上面两个sql改成下面的两个更好 
update table_xxx set name=#name#,version=version+1 where id=#id# and version=#version# 
update table_xxx set avai_amount=avai_amount-#subAmount# where id=#id# and avai_amount-#subAmount# >= 0
 

7. 分布式锁 
还是拿插入数据的例子,如果是分布是系统,构建全局唯一索引比较困难,例如唯一性的字段没法确定,这时候可以引入分布式锁,通过第三方的系统(redis或zookeeper),在业务系统插入数据或者更新数据,获取分布式锁,然后做操作,之后释放锁,这样其实是把多线程并发的锁的思路,引入多多个系统,也就是分布式系统中得解决思路。 

要点:某个长流程处理过程要求不能并发执行,可以在流程执行之前根据某个标志(用户ID+后缀等)获取分布式锁,其他流程执行时获取锁就会失败,也就是同一时间该流程只能有一个能执行成功,执行完成后,释放分布式锁(分布式锁要第三方系统提供) 

8. select + insert 
并发不高的后台系统,或者一些任务JOB,为了支持幂等,支持重复执行,简单的处理方法是,先查询下一些关键数据,判断是否已经执行过,在进行业务处理,就可以了 
注意:核心高并发流程不要用这种方法 

9. 状态机幂等 
在设计单据相关的业务,或者是任务相关的业务,肯定会涉及到状态机(状态变更图),就是业务单据上面有个状态,状态在不同的情况下会发生变更,一般情况下存在有限状态机,这时候,如果状态机已经处于下一个状态,这时候来了一个上一个状态的变更,理论上是不能够变更的,这样的话,保证了有限状态机的幂等。 

注意:订单等单据类业务,存在很长的状态流转,一定要深刻理解状态机,对业务系统设计能力提高有很大帮助 

10. 对外提供接口的api如何保证幂等 
如银联提供的付款接口:需要接入商户提交付款请求时附带:source来源,seq序列号 
source+seq在数据库里面做唯一索引,防止多次付款,(并发时,只能处理一个请求) 

重点: 
对外提供接口为了支持幂等调用,接口有两个字段必须传,一个是来源source,一个是来源方序列号seq,这个两个字段在提供方系统里面做联合唯一索引,这样当第三方调用时,先在本方系统里面查询一下,是否已经处理过,返回相应处理结果;没有处理过,进行相应处理,返回结果。注意,为了幂等友好,一定要先查询一下,是否处理过该笔业务,不查询直接插入业务系统,会报错,但实际已经处理了。
 

总结: 
幂等性应该是合格程序员的一个基因,在设计系统时,是首要考虑的问题,尤其是在像支付宝,银行,互联网金融公司等涉及的都是钱的系统,既要高效,数据也要准确,所以不能出现多扣款,多打款等问题,这样会很难处理,用户体验也不好

时间: 2024-10-29 05:10:25

【转载】高并发的核心技术-幂等的实现方案的相关文章

高并发系统数据幂等的解决方案_MsSql

前言 在系统开发过程中,经常遇到数据重复插入.重复更新.消息重发发送等等问题,因为应用系统的复杂逻辑以及网络交互存在的不确定性,会导致这一重复现象,但是有些逻辑是需要有幂等特性的,否则造成的后果会比较严重,例如订单重复创建,这时候带来的问题可是非同一般啊. 什么是系统的幂等性 幂等是数据中得一个概念,表示N次变换和1次变换的结果相同. 高并发的系统如何保证幂等性? 1.查询 查询的API,可以说是天然的幂等性,因为你查询一次和查询两次,对于系统来讲,没有任何数据的变更,所以,查询一次和查询多次一

高并发系统数据幂等的解决方案

前言 在系统开发过程中,经常遇到数据重复插入.重复更新.消息重发发送等等问题,因为应用系统的复杂逻辑以及网络交互存在的不确定性,会导致这一重复现象,但是有些逻辑是需要有幂等特性的,否则造成的后果会比较严重,例如订单重复创建,这时候带来的问题可是非同一般啊. 什么是系统的幂等性 幂等是数据中得一个概念,表示N次变换和1次变换的结果相同. 高并发的系统如何保证幂等性? 1.查询 查询的API,可以说是天然的幂等性,因为你查询一次和查询两次,对于系统来讲,没有任何数据的变更,所以,查询一次和查询多次一

高并发系统数据幂等的技术尝试

前言介绍 在系统开发过程中,经常遇到数据重复插入.重复更新.消息重发发送等等问题,因为应用系统的复杂逻辑以及网络交互存在的不确定性,会导致这一重复现象,但是有些逻辑是需要有幂等特性的,否则造成的后果会比较严重,例如订单重复创建,这时候带来的问题可是非同一般啊. 什么是系统的幂等性 幂等是数据中得一个概念,表示N次变换和1次变换的结果相同. 高并发的系统如何保证幂等性 查询API 查询的API,可以说是天然的幂等性,因为你查询一次和查询两次,对于系统来讲,没有任何数据的变更,所以,查询一次和查询多

【干货合集】大流量与高并发:数据库、架构与实践技巧

峰会专题:https://yq.aliyun.com/activity/112 报名入口:http://yq.aliyun.com/webinar/join/49?spm=5176.8155509.437644.12.F2Xi5N 从2009年第一届双十一购物节到2015年双十一全天912.17亿元的交易额,"双十一"当天订单创建峰值增长了350倍(每秒14万笔),支付峰值 (每秒8.59万笔)增长了430倍.为了保证越来越多购物者的用户体验,在IT基础设施上,阿里一次又一次地遭遇并超

缓存+HASH=高并发?你把高并发架构想得太简单!

[51CTO.com原创稿件]在互联网时代,高并发与高可用一样,已经变成系统的标配了,如果系统每秒查询率(QPS)没有上万,都不好意思跟人打招呼(虽然实际每天调用量不超过100).尤其在双十一期间,电商们凭借着藐视全球的流量,热心地分享自己的技术架构,几乎千篇一律地用缓存+哈希(HASH),仿佛这就是高并发的核心技术了.当然,如果你信了,那就离坑不远了. 缓存+哈希=高并发? 所谓知己知彼百战不殆,先来看看我们经常看到的高并发技术是什么. 资源静态化  活动秒杀页面是标准的高并发场景,活动期间单

互联网高并发秒杀系统核心技术架构解析

互联网高并发秒杀系统核心技术架构解析http://www.365yg.com/item/6430569659715551746/

97期:大流量与高并发—双11技术盘点

本期头条   [峰会回顾]8月30-31日我们成功举办了"蚂蚁金服&阿里云在线金融技术峰会",本次峰会聚焦数据库.应用架构.移动开发.机器学习等热门领域,帮助金融业技术开发者深入解析互联网应用的前沿应用与技术实践.目前活动视频.整理文章已经出炉,点击收藏. • 大流量与高并发:双11技术盘点 • 阿里云开源DataX 3.0:异构数据源离线同步工具,支持10余款主流开源数据库 最新资讯   阿里云中标国税总局大数据专有云项目,中标金额近四千万元点击查看 据中国政府采购网公示消息

亿级流量电商详情页系统的大型高并发与高可用缓存架构实战

对于高并发的场景来说,比如电商类,o2o,门户,等等互联网类的项目,缓存技术是Java项目中最常见的一种应用技术.然而,行业里很多朋友对缓存技术的了解与掌握,仅仅停留在掌握redis/memcached等缓存技术的基础使用,最多了解一些集群相关的知识,大部分人都可以对缓存技术掌握到这个程度.然而,仅仅对缓存相关的技术掌握到这种程度,无论是对于开发复杂的高并发系统,或者是在往Java高级工程师.Java资深工程师.Java架构师这些高阶的职位发展的过程中,都是完全不够用的.技术成长出现瓶颈,在自己

谈谈大型高并发高负载网站的系统架构

http://blog.csdn.net/fenglibing/archive/2010/04/10/5469788.aspx   转自:http://www.educity.cn/rk/sa/200906031701101214.htm     我在CERNET做过拨号接入平台的搭建,而后在Yahoo&3721从事过搜索引擎前端开发,又在MOP处理过大型社区猫扑大杂烩的架构升级等工作,同时自己接触和开发过不少大中型网站的模块,因此在大型网站应对高负载和并发的解决方案上有一些积累和经验,可以和大