java并发编程实践笔记

1, 保证线程安全的三种方法:
    a, 不要跨线程访问共享变量
    b, 使共享变量是final类型的
    c, 将共享变量的操作加上同步

2, 一开始就将类设计成线程安全的, 比在后期重新修复它,更容易.

3, 编写多线程程序, 首先保证它是正确的, 其次再考虑性能.

4, 无状态或只读对象永远是线程安全的.

5, 不要将一个共享变量裸露在多线程环境下(无同步或不可变性保护)

6, 多线程环境下的延迟加载需要同步的保护, 因为延迟加载会造成对象重复实例化

7, 对于volatile声明的数值类型变量进行运算, 往往是不安全的(volatile只能保证可见性,不能保证原子性).
详见volatile原理与技巧中, 脏数据问题讨论.

8, 当一个线程请求获得它自己占有的锁时(同一把锁的嵌套使用), 我们称该锁为可重入锁.
在jdk1.5并发包中, 提供了可重入锁的java实现-ReentrantLock.

9, 每个共享变量,都应该由一个唯一确定的锁保护.
创建与变量相同数目的ReentrantLock, 使他们负责每个变量的线程安全.

10,虽然缩小同步块的范围, 可以提升系统性能.
但在保证原子性的情况下, 不可将原子操作分解成多个synchronized块.

11, 在没有同步的情况下, 编译器与处理器运行时的指令执行顺序可能完全出乎意料.
原因是, 编译器或处理器为了优化自身执行效率, 而对指令进行了的重排序(reordering).

12, 当一个线程在没有同步的情况下读取变量, 它可能会得到一个过期值, 但是至少它可以看到那个
线程在当时设定的一个真实数值. 而不是凭空而来的值. 这种安全保证, 称之为最低限的安全性(out-of-thin-air safety)

在开发并发应用程序时, 有时为了大幅度提高系统的吞吐量与性能, 会采用这种无保障的做法.
但是针对, 数值的运算, 仍旧是被否决的.

13, volatile变量,只能保证可见性, 无法保证原子性.
详见 volatile原理与技巧

14, 某些耗时较长的网络操作或IO, 确保执行时, 不要占有锁.

15, 发布(publish)对象, 指的是使它能够被当前范围之外的代码所使用.(引用传递)
对象逸出(escape), 指的是一个对象在尚未准备好时将它发布.

原则: 为防止逸出, 对象必须要被完全构造完后, 才可以被发布(最好的解决方式是采用同步)

this关键字引用对象逸出
例子: 在构造函数中, 开启线程, 并将自身对象this传入线程, 造成引用传递.
而此时, 构造函数尚未执行完, 就会发生对象逸出了.

16, 必要时, 使用ThreadLocal变量确保线程封闭性(封闭线程往往是比较安全的, 但一定程度上会造成性能损耗)
封闭对象的例子在实际使用过程中, 比较常见, 例如 hibernate openSessionInView机制, jdbc的connection机制.

17, 单一不可变对象往往是线程安全的(复杂不可变对象需要保证其内部成员变量也是不可变的)
良好的多线程编程习惯是: 将所有的域都声明为final, 除非它们是可变的

18, 保证共享变量的发布是安全的
    a, 通过静态初始化器初始化对象(jls 12.4.2叙述, jvm会保证静态初始化变量是同步的)
    b, 将对象申明为volatile或使用AtomicReference
    c, 保证对象是不可变的
    d, 将引用或可变操作都由锁来保护

19, 设计线程安全的类, 应该包括的基本要素:
    a, 确定哪些是可变共享变量
    b, 确定哪些是不可变的变量
    c, 指定一个管理并发访问对象状态的策略

20, 将数据封装在对象内部, 并保证对数据的访问是原子的.
建议采用volatile javabean模型或者构造同步的getter,setter.

21, 线程限制性使构造线程安全的类变得更容易, 因为类的状态被限制后, 分析它的线程安全性时, 就不必检查完整的程序.

22, 编写并发程序, 需要更全的注释, 更完整的文档说明.

23, 在需要细分锁的分配时, 使用java监视器模式好于使用自身对象的监视器锁.
前者的灵活性更好.

Object target = new Object();
// 这里使用外部对象来作为监视器, 而非this
synchronized(target) {
    // TODO
}

针对java monitor pattern, 实际上ReentrantLock的实现更易于并发编程.
功能上, 也更强大.

24, 设计并发程序时, 在保证伸缩性与性能折中的前提下, 优先考虑将共享变量委托给线程安全的类.
由它来控制全局的并发访问.

25, 使用普通同步容器(Vector, Hashtable)的迭代器, 需要外部锁来保证其原子性.
原因是, 普通同步容器产生的迭代器是非线程安全的.

26, 在并发编程中, 需要容器支持的时候, 优先考虑使用jdk并发容器
(ConcurrentHashMap, ConcurrentLinkedQueue, CopyOnWriteArrayList...).

27, ConcurrentHashMap, CopyOnWriteArrayList
并发容器的迭代器,以及全范围的size(), isEmpty() 都表现出弱一致性.
他们只能标示容器当时的一个数据状态. 无法完整响应容器之后的变化和修改.

28, 使用有界队列, 在队列充满或为空时, 阻塞所有的读与写操作. (实现生产-消费的良好方案)
BlockQueue下的实现有LinkedBlockingQueue与ArrayBlockingQueue, 前者为链表, 可变操作频繁优先考虑,后者为数组, 读取操作频繁优先考虑.
PriorityBlockingQueue是一个按优先级顺序排列的阻塞队列, 它可以对所有置入的元素进行排序(实现Comparator接口)

29, 当一个方法, 能抛出InterruptedException, 则意味着, 这个方法是一个可阻塞的方法, 如果它被中断, 将提前结束阻塞状态.
当你调用一个阻塞方法, 也就意味着, 本身也称为了一个阻塞方法, 因为你必须等待阻塞方法返回.

如果阻塞方法抛出了中断异常, 我们需要做的是, 将其往上层抛, 除非当前已经是需要捕获异常的层次.
如果当前方法, 不能抛出InterruptedException, 可以使用Thread.currentThread.interrupt()方法, 手动进行中断.

时间: 2024-09-18 22:55:06

java并发编程实践笔记的相关文章

推荐阅读Java并发性领域编程最值得一读的力作《JAVA并发编程实践》

我的第一次之给<JAVA并发编程实践>写推荐序英文书名:Java Concurrency in Practice 中文书名:JAVA并发编程实践 这是一本入围17届Jolt大奖的书,虽然最终他没有获奖,但是这只是与政治有关的.:) 推荐序原文如下: http://book.csdn.net/bookfiles/398/10039814644.shtml 在汗牛充栋的 Java 图书堆中,关于并发性的书籍却相当稀少,然而这本书的出现,将极大地弥补了这一方面的空缺.即使并发性编程还没进入到您的 J

Java 并发编程学习笔记之核心理论基础_java

并发编程是Java程序员最重要的技能之一,也是最难掌握的一种技能.它要求编程者对计算机最底层的运作原理有深刻的理解,同时要求编程者逻辑清晰.思维缜密,这样才能写出高效.安全.可靠的多线程并发程序.本系列会从线程间协调的方式(wait.notify.notifyAll).Synchronized及Volatile的本质入手,详细解释JDK为我们提供的每种并发工具和底层实现机制.在此基础上,我们会进一步分析java.util.concurrent包的工具类,包括其使用方式.实现源码及其背后的原理.本

Java 并发编程学习笔记之Synchronized简介_java

一.Synchronized的基本使用 Synchronized是Java中解决并发问题的一种最常用的方法,也是最简单的一种方法.Synchronized的作用主要有三个:(1)确保线程互斥的访问同步代码(2)保证共享变量的修改能够及时可见(3)有效解决重排序问题.从语法上讲,Synchronized总共有三种用法: (1)修饰普通方法 (2)修饰静态方法 (3)修饰代码块 接下来我就通过几个例子程序来说明一下这三种使用方式(为了便于比较,三段代码除了Synchronized的使用方式不同以外,

JAVA并发编程学习笔记之CAS操作

CAS操作 CAS是单词compare and set的缩写,意思是指在set之前先比较该值有没有变化,只有在没变的情况下才对其赋值. 我们常常做这样的操作 if(a==b) { a++; } 试想一下如果在做a++之前a的值被改变了怎么办?a++还执行吗?出现该问题的原因是在多线程环境下,a的值处于一种不定的状态.采用锁可以解决此类问题,但CAS也可以解决,而且可以不加锁. int expect = a; if(a.compareAndSet(expect,a+1)) { doSomeThin

Java并发编程开发笔记——1简言

线程 风险:Java对线程的支持其实是一把双刃剑. 安全性问题:线程安全性可能是非常复杂的,在没有充足同步的情况下,多个线程的操作执行顺序是不可预测的,甚至会产生奇怪的结果. @NotThreadSafe是一个自定义标注,用于说明类和类成员的并发属性.(其他标注包括@ThreadSafe和@Immutable).如果用@ThreadSafe来标注某个类,那么开发人员可以放心地在多线程环境下使用这个类,维护人员也会发现它能保证线程安全性,而软件分析工具还可以识别出潜在的编码错误. 在UnsafeS

Java并发编程开发笔记——2线程安全性

在构建稳健的并发程序时,必须正确地使用线程和锁.但这些终归只是一些机制.要编写线程安全的代码,其核心在于要对状态访问操作进行管理,特别是对共享的(Shared)和可变的(Mutable)状态的访问. "共享"意味着变量可以由多个线程同时访问,而"可变"则意味着变量的值在其生命周期内可以发生变化.我们将像讨论代码那样讨论线程安全性,但更侧重于如何防止在数据上发生不可控的并发访问. 一个对象是否需要是线程安全的,取决于它是否被多个线程访问.这指的是在程序中访问对象的方式

Java并发基础实践:退出任务II

在本系列的上一篇中所述的退出并发任务的方式都是基于JDK 5之前的API,本文将介绍使用由JDK 5引入的并发工具包中的API来退出任务.(2013.10.08最后更新) 在本系列的前一篇中讲述了三种退出并发任务的方式--停止线程:可取消的任务:中断,但都是基于JDK 5之前的API.本篇将介绍由JDK 5引入的java.concurrent包中的Future来取消任务的执行. 1. Future模式 Future是并发编程中的一种常见设计模式,它相当于是Proxy模式与Thread-Per-M

《Java线程与并发编程实践》—— 导读

前言 Java线程与并发编程实践 线程和并发工具并非尤物,但是它们是正式应用的重要部分.本书会向你介绍Java 8 Update 60中线程特性以及并发工具的大部分内容. 第1章介绍了类Thread和接口Runnable.你会学习如何创建Thread以及Runnable对象,获取和设置线程状态.启动线程.中断线程,将一条线程插入另外一条线程以及触发线程睡眠. 第2章关注同步.学习后你会解决一些问题,如没有同步就无法解决的竞态条件.你也能学到如何创建同步方法.块,以及如何使用忽略互斥访问的轻量级同

《Java线程与并发编程实践》—— 第2章 同步 2.1 线程中的问题

第2章 同步 Java线程与并发编程实践 线程交互通常是通过共享变量完成的,当线程之间没有交互时,开发多线程的应用程序会变得简单许多.一旦发生了交互,很多诱发线程不安全(在多线程环境下不正确)的因素就会暴露出来.在这一章中,你将会认识到这些问题,同时也会学习如何正确地使用Java面向同步的特性来克服它们. 2.1 线程中的问题 Java对线程的支持促进了响应式.可扩展应用程序的发展.不过,这样的支持是以增加复杂性作为代价的.如果不多加小心,你的代码就会到处充斥着极难以察觉的bug,而这些bug多