Dynamic Programming
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [−2,1,−3,4,−1,2,1,−5,4]
,
the contiguous subarray [4,−1,2,1]
has the largest sum = 6
.
More practice:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
C++实现代码:
#include<iostream> #include<climits> using namespace std; class Solution { public: int maxSubArray(int A[], int n) { if(n==0) return 0; int maxSum=0; int sum=0; int i; int max=INT_MIN; for(i=0;i<n;i++) { if(A[i]>=0) break; if(A[i]>max) max=A[i]; } if(i>=n) return max; for(i=0;i<n;i++) { sum+=A[i]; if(maxSum<sum) { maxSum=sum; } if(sum<0) sum=0; } return maxSum; } }; int main() { Solution s; int A[10]={-2,-3,-8,0}; cout<<s.maxSubArray(A,10)<<endl; }
注意:其中至少包含一个数,所以当全是负数时,只能返回最大的负数。。
时间: 2024-10-30 16:40:59