【独家】深度学习论文阅读路线图

如果你是深度学习领域的一名新手,可能会遇到的第一个问题是“应该从哪篇论文开始读起呢?”

这里给出了深度学习论文阅读路线图!

路线图按照下面四个准则构建而成:

  • 从提纲到细节
  • 从经典到前沿
  • 从通用领域到特定领域
  • 专注于最先进的技术

你将会发现很多近期发表但是确实值得一读的论文。

我们将持续不断的给这条路线图添加论文。

1

深度学习历史和基础

1.0  书籍



1.1调查



1.2 深度信念网络(DBN) (深度学习开篇的里程碑)



1.3 ImageNet进展(深度学习从此爆发)



1.4语音识别进展



阅读完上面这些论文后,通过对深度学习模型(包括CNN,RNN,LSTM)的基础框架,以及深度学习如何应用于图像和语音识别问题的理解,你将会对深度学习的历史有一个基本的认识。下面的论文将带你深入理解深度学习模型,深度学习在不同领域的应用和前沿。我们建议你根据自己的兴趣和研究方向选择下面的论文进行阅读。

2

深度学习方法

2.1模型



2.2优化



2.3无监督学习/深度生成模型



2.4RNN/ Sequence-to-Sequence模型



2.5神经图灵机



2.6深度强化学习



2.7深度迁移学习/终生学习/强化学习



2.8One Shot深度学习



3

应用

3.1NLP(自然语言处理)



3.2目标检测



3.3视觉跟踪



3.4图像标注



3.5机器翻译

Some milestone papers are listed in RNN / Seq-to-Seq topic.



3.6机器人技术



3.7艺术



3.8目标分割



原文发布时间为:2017-03-25 

本文作者:王军福  

时间: 2024-10-01 23:40:17

【独家】深度学习论文阅读路线图的相关文章

深度学习论文阅读路线图

1.深度学习历史和基础 1.0  书籍 1.1调查 1.2 深度信念网络(DBN) (深度学习开篇的里程碑) 1.3 ImageNet进展(深度学习从此爆发) 1.4语音识别进展 阅读完上面这些论文后,通过对深度学习模型(包括CNN,RNN,LSTM)的基础框架,以及深度学习如何应用于图像和语音识别问题的理解,你将会对深度学习的历史有一个基本的认识.下面的论文将带你深入理解深度学习模型,深度学习在不同领域的应用和前沿.我们建议你根据自己的兴趣和研究方向选择下面的论文进行阅读. 2深度学习方法 2

126篇殿堂级深度学习论文分类整理 从入门到应用 | 干货

如果你有非常大的决心从事深度学习,又不想在这一行打酱油,那么研读大牛论文将是不可避免的一步.而作为新人,你的第一个问题或许是:"论文那么多,从哪一篇读起?" 本文将试图解决这个问题--文章标题本来是:"从入门到绝望,无止境的深度学习论文".请诸位备好道具,开启头悬梁锥刺股的学霸姿势. 开个玩笑. 但对非科班出身的开发者而言,读论文的确可以成为一件很痛苦的事.但好消息来了--为避免初学者陷入迷途苦海,昵称为 songrotek 的学霸在 GitHub 发布了他整理的深

(zhuan) 126 篇殿堂级深度学习论文分类整理 从入门到应用

126 篇殿堂级深度学习论文分类整理 从入门到应用 | 干货 雷锋网  作者: 三川 2017-03-02 18:40:00 查看源网址 阅读数:66     如果你有非常大的决心从事深度学习,又不想在这一行打酱油,那么研读大牛论文将是不可避免的一步.而作为新人,你的第一个问题或许是:"论文那么多,从哪一篇读起?" 本文将试图解决这个问题--文章标题本来是:"从入门到绝望,无止境的深度学习论文".请诸位备好道具,开启头悬梁锥刺股的学霸姿势. 开个玩笑. 但对非科班出

华盛顿邮报:中国AI研究领先世界,深度学习论文数量及质量居第一

据<华盛顿邮报报道>,人类距离造出有自我意识的人工智能可能还有很长的路要走.但随着智能手机以及其他设备中机器学习服务的兴起,一种狭义的.专门的AI已经非常流行.这一分支的AI研究也正在加速.   事实上,随着越来越多的行业和政策制定者从机器学习中得到受益,有两个国家似乎在AI研究的"军备竞赛"中走在前列.这可能对AI的未来有重大影响.   "深度学习"是机器学习的一个分支,机器学习则是AI的分支--涉及使用计算机算法执行模式识别和分析.例如,深度学习可以

Keras之父:大多数深度学习论文都是垃圾,炒作AI危害很大

Keras之父.谷歌大脑人工智能和深度学习研究员François Chollet最新撰写了一本深度学习Python教程实战书籍<Python深度学习>,书中介绍了深度学习使用Python语言和强大Keras库,详实新颖. 近日,François Chollet接受了采访,就"深度学习到底是什么"."Python为何如此广受欢迎"."目前深度学习面临的主要挑战"等议题进行了回答.他认为,目前很多深度学习领域的论文都是无意义的,因为这些研

热门论文Top 30:那些被国外专家引用最多的计算机视觉和深度学习论文【可下载】

在2012年,我整理了一份有关计算机视觉的热门论文清单.我把论文的研究重点放在视觉科学上,避免其与图形处理.调研和纯静态处理等方向产生重叠.但在2012年后随着深度学习技术的兴起,计算机视觉科学发生了巨大的变化--从深度学习中产生了大量的视觉科学基线.虽然不知道该趋势还会持续多久,但我认为它们应该拥有属于自己的清单. 一如我一直强调的,被引用得最多的论文并不代表它在该领域做出的贡献就最大:而是代表了它抓住了当时的某个热点.   以下就是我重新整理的有关计算机视觉与(或)深度学习的Top30论文清

深度学习必备手册(上)

更多深度文章,请关注云计算频道:https://yq.aliyun.com/cloud 请收下这份关于人工智能的根目录--博客整理系列(一) 关于数据科学的那些事--博客整理系列(二) 机器学习必备手册--博客整理系列(三) 扩展眼界的都在这--博客整理系列(四) 深度学习必备手册--博客整理系列(六) 深度学习的概念源于人工神经网络的研究,如果追溯深度学习的概念还是要回到2006年Hinton那篇论文,基于深信度网(DNB)提出非监督贪心逐层训练算法,未解决深层结构相关的优化难题出现的论文.

深度学习必备手册(下)

更多深度文章,请关注云计算频道:https://yq.aliyun.com/cloud 请收下这份关于人工智能的根目录--博客整理系列(一) 关于数据科学的那些事--博客整理系列(二) 机器学习必备手册--博客整理系列(三) 扩展眼界的都在这--博客整理系列(四) 深度学习必备手册(上)--博客整理系列(五) 深度学习的概念源于人工神经网络的研究,如果追溯深度学习的概念还是要回到2006年Hinton那篇论文,基于深信度网(DNB)提出非监督贪心逐层训练算法,未解决深层结构相关的优化难题出现的论

【资源】用深度学习解决自然语言处理中的7大问题,文本分类、语言建模、机器翻译等

本文讲的是用深度学习解决自然语言处理中的7大问题,文本分类.语言建模.机器翻译等,自然语言处理领域正在从统计学方法转向神经网络方法.在自然语言中,仍然存在许多具有挑战性的问题.但是,深度学习方法在某些特定的语言问题上取得了state-of-the-art的结果.不仅仅是在一些benchmark问题上深度学习模型取得的表现,这是最有趣的:事实上,单个模型可以学习单词的含义和执行语言任务,从而避免需要一套专门的.人工的方法. 这篇文章将介绍深度学习方法正在取得进展的7类有趣的自然语言处理任务. 文本