转载自 http://www.cnblogs.com/catch/p/3500678.html
左值 (lvalue)和右值 (rvalue) 是 c/c++ 中一个比较晦涩基础的概念,有的人可能甚至没有听过,但这个概念到了 c++11 后却变得十分重要,它们是理解 move, forward 等新语义的基础。
左值右值的定义
左值与右值这两概念是从 c 中传承而来的,在 c 中,左值指的是既能够出现在等号左边也能出现在等号右边的变量(或表达式),右值指的则是只能出现在等号右边的变量(或表达式).
int a; int b; a = 3; b = 4; a = b; b = a; // 以下写法不合法。 = a; a+b = 4;
在 c 语言中,通常来说有名字的变量就是左值(如上面例子中的 a, b),而由运算操作(加减乘除,函数调用返回值等)所产生的中间结果(没有名字)就是右值,如上的 3 + 4, a + b 等。我们暂且可以认为:左值就是在程序中能够寻值的东西,右值就是没法取到它的地址的东西(不完全准确),但如上概念到了 c++ 中,就变得稍有不同。
具体来说,在 c++ 中,每一个表达式都会产生一个左值,或者右值,相应的,该表达式也就被称作“左值表达式", "右值表达式"。对于内置的基本数据类型来说(primitive types),左值右值的概念和 c 没有太多不同,不同的地方在于自定义的类型,而且这种不同比较容易让人混淆:
1) 对于内置的类型,右值是不可被修改的(non-modifiable),也不可被 const, volatile 所修饰(cv-qualitification ignored)
2) 对于自定义的类型(user-defined types),右值却允许通过它的成员函数进行修改。
对于 1),这和 C 是一致的,2) 却是 C++ 中所独有, 因此,如果你看到 C++ 中如下的写法,千万不要惊讶:
class cs { public: cs(int i): i_(i) { cout << "cs(" << i <<") constructor!" << endl; } ~cs() { cout << "cs destructor,i(" << i_ << ")" << endl; } cs& operator=(const cs& other) { i_ = other.i_; cout << "cs operator=()" << endl; return *this; } int get_i() const { return i_; } void change(int i) { i_ = i; } private: int i_; }; cs get_cs() { static int i = 0; return cs(i++); } int main() { // 合法 (get_cs() = cs(2)).change(323); get_cs() = cs(2);// operator=() get_cs().change(32); return 0; }
这个特性看起来多少有些奇怪,因为通常来说,自定义类型应该设计得和内置类型尽量一样(所谓 value type),但这个特性却有意无意使得自定义类型特殊化了。对此,我们其实可以这样想,也许会好理解点:自定义类型允许有成员函数,而通过右值调用成员函数是被允许的,但成员函数有可能不是 const 类型,因此通过调用右值的成员函数,也就可能会修改了该右值,done!
左值引用,右值引用
关于右值,在 c++11 以前有一个十分值得关注的语言的特性:右值能被 const 类型的引用所指向,所以如下代码是合法的。
const cs& ref = get_cs();
而且准确地说,右值只能被 const 类型的 reference 所指向:
// error cs& ref = get_cs();
当一个右值被 const reference 指向时,它的生命周期就被延长了,这个用法我在前面一篇博客里讲到过它的相关应用。其中暗藏的逻辑其实就是:右值不能当成左值使用(但左值可以当成右值使用).
另外值得注意的是,对于前面提到的右值的两个特性:
1) 允许调用成员函数。
2) 只能被 const reference 指向。
它们导致了一些比较有意思的结果,比如:
void func(cs& c) { cout << "c:" << c.get_i() << endl; } //error func(get_cs()); //正确 func(get_cs() = get_cs());
其中: func(get_cs() = get_cs()); 能够被正常编译执行的原因就在于,cs 的成员函数 operator=() 返回的是 cs&!不允许非 const reference 引用 rvalue 并不是完美的,它事实上也引起了一些问题,比如说拷贝构造函数的接口不一致了,这是什么意思呢?
class cs { public: cs& operator=(const cs& c); }; // 另一种写法 class cs2 { public: cs2& operator=(cs2& c); };
上面两种写法的不同之处就在于参数,一个是 const reference,一个是非 const。对于自定义类型的参数,通常来说,如果函数不需要修改传进来的参数,我们往往就按 const reference 的写法,但对于 copy constructor 来说,它经常是需要修改参数的值,比如 auto_ptr。
// 类似auto_ptr class auto_ptr { public: auto_ptr(auto_tr& p) { ptr_ = p.ptr_; p.ptr_ = NULL; } private: void* ptr_; };
所以,对于 auto_ptr 来说,它的 copy constructor 的参数类型是 non const reference。有些情况下,这种写法应该被鼓励,毕竟 non const reference 比 const reference 更能灵活应对各种情况,从而保持一致的接口类型,当然也有代价,参数的语义表达不准确了。除此更大的问题是如果拷贝构造函数写成这样子,却又对
rvalue 的使用带来了极大的不变,如前面所讲的例子,rvalue 不能被 non const reference 所引用,所以像 auto_ptr 的这样的类的 copy constructor 就不能接受 rvalue.
// 错误 auto_ptr p(get_ptr()); // operator=() 同理,错误。 auto_ptr p = get_ptr();
这也是 auto_ptr 很不好用的原因之一,为了解决这个问题,c++11 中引入了一种新的引用类型,该种引用是专门用来指向 rvalue 的,有了这种新类型,对 lvalue 和 rvalue 的引用就能明确区分开来了。