ACID,指数据库事务正确执行的四个基本要素的缩写。包含:原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)、持久性(Durability)。一个支持事务(Transaction)的数据库系统,必需要具有这四种特性,否则在事务过程(Transaction processing)当中无法保证数据的正确性,交易过程极可能达不到交易方的要求。
原子性
整个事务中的所有操作,要么全部完成,要么全部不完成,不可能停滞在中间某个环节。事务在执行过程中发生错误,会被回滚(Rollback)到事务开始前的状态,就像这个事务从来没有执行过一样。
一致性
在事务开始之前和事务结束以后,数据库的完整性约束没有被破坏。
隔离性
两个事务的执行是互不干扰的,一个事务不可能看到其他事务运行时,中间某一时刻的数据。
持久性
在事务完成以后,该事务所对数据库所作的更改便持久的保存在数据库之中,并不会被回滚。
由于一项操作通常会包含许多子操作,而这些子操作可能会因为硬件的损坏或其他因素产生问题,要正确实现ACID并不容易。ACID建议数据库将所有需要更新 以及修改的资料一次操作完毕,但实际上并不可行。
目前主要有两种方式实现ACID:第一种是Write ahead logging,也就是日志式的方式。第二种是Shadow paging。
回滚
删除由一个或多个部分完成的事务执行的更新。为在应用程序、数据库或系统错误后还原数据库的完整性,需要使用回滚。
回滚泛指程序更新失败, 返回上一次正确状态的行为。
回滚对程序员意味着非常严重的失误。因为回滚次数往往与程序员的薪金直接联系。主流互联网公司通常都将回滚定位为最严重的事故。
回滚与恢复有本质的区别。
而升级回滚则是指因升级中所发生的意外而自动回滚
1 事务并发处理(面试的意义更大)
a) 事务:ACID
i. Atomic ConsistencyItegrity Durability
b) 事务并发时可能出现的问题:
第一类丢失更新(Lost Update)
时间 |
取款事务A |
存款事务B |
T1 |
开始事务 |
|
T2 |
|
开始事务 |
T3 |
查询账户余额为1000元 |
|
T4 |
|
查询账户余额为1000元 |
T5 |
|
汇入100元把余额改为1100元 |
T6 |
|
提交事务 |
T7 |
取出100元把余额改为900 元 |
|
T8 |
撤销事务 |
|
T9 |
余额恢复为1000元(丢失更新) |
|
dirtyread脏读(读到了另一个事务在处理中还未提交的数据)
时间 |
取款事务A |
存款事务B |
T1 |
开始事务 |
|
T2 |
|
开始事务 |
T3 |
|
查询账户余额为1000元 |
T4 |
|
汇入100元把余额改为1100元 |
T5 |
查询账户余额为1100元(读取脏数据) |
|
T6 |
|
回滚 |
T7 |
取款1100 |
|
T8 |
提交事务失败 |
|
non-repeatableread 不可重复读
时间 |
取款事务A |
存款事务B |
T1 |
开始事务 |
|
T2 |
|
开始事务 |
T3 |
查询账户余额为1000元 |
|
T5 |
|
汇入100元把余额改为1100元 |
T5 |
|
提交事务 |
T6 |
查询帐户余额为1100元 |
|
T8 |
提交事务 |
|
secondlost update problem 第二类丢失更新(不可重复读的特殊情况)
时间 |
取款事务A |
存款事务B |
T1 |
|
开始事务 |
T2 |
开始事务 |
|
T3 |
|
查询账户余额为1000元 |
T4 |
查询账户余额为1000元 |
|
T5 |
|
取出100元把余额改为900元 |
T6 |
|
提交事务 |
T7 |
汇入100元 |
|
T8 |
提交事务 |
|
T9 |
把余额改为1100元(丢失更新) |
|
phantomread 幻读
时间 |
查询学生事务A |
插入新学生事务B |
T1 |
开始事务 |
|
T2 |
|
开始事务 |
T3 |
查询学生为10人 |
|
T4 |
|
插入1个学生 |
T5 |
查询学生为11人 |
|
T6 |
|
提交事务 |
T7 |
提交事务 |
|
c) 数据库的事务隔离机制
i. 查看 java.sql.Connection 文档
ii. 1:read-uncommitted 2:read-committed 4:repeatable read 8:serializable(数字代表对应值)
为什么取值要使用 1 2 4 8而不是 1 2 3 4
1=0000 2=0010 4=01008=1000(位移计算效率高)
1. 只要数据库支持事务,就不可能出现第一类丢失更新
2. read-uncommitted(允许读取未提交的数据) 会出现dirty read, phantom-read,
non-repeatableread 问题
3. read-commited(读取已提交的数据项目中一般都使用这个)不会出现dirty read,因为只有另
一个事务提交才会读出来结果,但仍然会出现 non-repeatable read 和 phantom-read
使用read-commited机制可用悲观锁乐观锁来解决non-repeatable read和
phantom-read问题
4. repeatableread(事务执行中其他事务无法执行修改或插入操作 较安全)
5. serializable解决一切问题(顺序执行事务不并发,实际中很少用)
d) 设定hibernate的事务隔离级别(使用hibernate.connection.isolation配置取值1、2、4、8)
i. hibernate.connection.isolation= 2(如果不设 默认依赖数据库本身的级别)
ii. 用悲观锁解决repeatable read的问题(依赖于数据库的锁)
(详见项目 hibernate_3100_Hibernate_Concurrency_Pessimistic_Lock)
1. select ... for update
2. 使用另一种load方法--load(xx.class , i ,
LockMode.Upgrade)
a) LockMode.None无锁的机制,Transaction结束时,切换到此模式
b) LockMode.read在査询的时候hibernate会自动获取锁
c) LockMode.write insert updatehibernate 会自动获取锁
d) 以上3种锁的模式,是hibernate内部使用的(不需要设)
e) LockMode.UPGRADE_NOWAIT是 ORACLE 支持的锁的方式
e) Hibernate(JPA)乐观锁定(ReadCommitted)
(详见项目hibernate_3200_Hibernate_Concurrency_Optimistic_Lock)
实体类中增加version属性(数据库也会对应生成该字段,初始值为0),并在其get方法前加
@Version注解,则在操作过程中没更新一次该行数据则version值加1,即可在事务提交前判断该数据是否被其他事务修改过.
@Version
时间 |
转账事务A |
取款事务B |
T1 |
|
开始事务 |
T2 |
开始事务 |
|
T3 |
查询学生为10人 |
查询账户余额为1000 version=0 |
T4 |
查询账户余额为1000 version=0 |
|
T5 |
|
取出100 把余额改为900 version=1 |
T6 |
|
提交事务 |
T7 |
汇入100元 |
|
T8 |
提交事务 ? version>0 throw Exception |
|
T9 |
把余额改为1100元(丢失更新) |
|