tensorFlow 教程

时间: 2024-12-29 02:04:59

tensorFlow 教程的相关文章

简明 TensorFlow 教程 —  第三部分: 所有的模型

本文讲的是简明 TensorFlow 教程 -  第三部分: 所有的模型, 快速上手世界上最流行的深度学习框架 概述 在本文中,我们将讨论 TensorFlow 中当前可用的所有抽象模型,并描述该特定模型的用例以及简单的示例代码. 完整的工作示例源码. 一个循环神经网络. 递归神经网络 简称 RNN 用例:语言建模,机器翻译,词嵌入,文本处理. 自从长短期记忆神经网络(LSTM)和门限循环单元(GRU)的出现,循环神经网络在自然语言处理中的发展迅速,远远超越了其他的模型.他们可以被用于传入向量以

TensorFlow教程之完整教程 2.5 TensorFlow运作方式入门

本文档为TensorFlow参考文档,本转载已得到TensorFlow中文社区授权. 本篇教程的目的,是向大家展示如何利用TensorFlow使用(经典)MNIST数据集训练并评估一个用于识别手写数字的简易前馈神经网络(feed-forward neural network).我们的目标读者,是有兴趣使用TensorFlow的资深机器学习人士. 因此,撰写该系列教程并不是为了教大家机器学习领域的基础知识. 在学习本教程之前,请确保您已按照安装TensorFlow教程中的要求,完成了安装. 教程使

简明 TensorFlow 教程 — 第二部分:混合学习

本文讲的是简明 TensorFlow 教程 - 第二部分:混合学习, 快速上手世界上最流行的深度学习框架. 确保你已经阅读了第一部分 在本文中,我们将演示一个宽 N 深度网络,它使用广泛的线性模型与前馈网络同时训练,以证明它比一些传统的机器学习技术能提供精度更高的预测结果.下面我们将使用混合学习方法预测泰坦尼克号乘客的生存概率. 混合学习技术已被 Google 应用在 Play 商店中提供应用推荐.Youtube 也在使用类似的混合学习技术来推荐视频. 本文的代码可以在这里找到. 广泛深度网络

TensorFlow教程之完整教程 2.6 卷积神经网络

本文档为TensorFlow参考文档,本转载已得到TensorFlow中文社区授权. 卷积神经网络 注意: 本教程适用于对Tensorflow有丰富经验的用户,并假定用户有机器学习相关领域的专业知识和经验. 概述 对CIFAR-10 数据集的分类是机器学习中一个公开的基准测试问题,其任务是对一组32x32RGB的图像进行分类,这些图像涵盖了10个类别:飞机, 汽车, 鸟, 猫, 鹿, 狗, 青蛙, 马, 船以及卡车. 目标 本教程的目标是建立一个用于识别图像的相对较小的卷积神经网络,在这一过程中

TensorFlow教程之完整教程 2.3 MNIST入门

本文档为TensorFlow参考文档,本转载已得到TensorFlow中文社区授权. 机器学习入门 这个教程的目标读者是对机器学习和TensorFlow都不太了解的新手. 当我们开始学习编程的时候,第一件事往往是学习打印"Hello World".就好比编程入门有Hello World,机器学习入门有MNIST. MNIST是一个入门级的计算机视觉数据集,它包含各种手写数字图片: 它也包含每一张图片对应的标签,告诉我们这个是数字几.比如,上面这四张图片的标签分别是5,0,4,1. 在此

TensorFlow教程之新手入门 1.2下载及安装

本文档为TensorFlow参考文档,本转载已得到TensorFlow中文社区授权. 下载与安装 你可以使用我们提供的二进制包, 或者使用源代码, 安装 TensorFlow. 二进制安装 TensorFlow Python API 依赖 Python 2.7 版本. 在 Linux 和 Mac 下最简单的安装方式, 是使用 pip 安装. 如果在安装过程中遇到错误, 请查阅 常见问题. 为了简化安装步骤, 建议使用 virtualenv, 教程见 这里. Ubuntu/Linux # 仅使用

TensorFlow教程之完整教程 2.1总览

本文档为TensorFlow参考文档,本转载已得到TensorFlow中文社区授权. 综述 面向机器学习初学者的 MNIST 初级教程 如果你是机器学习领域的新手, 我们推荐你从本文开始阅读. 本文通过讲述一个经典的问题, 手写数字识别 (MNIST), 让你对多类分类 (multiclass classification) 问题有直观的了解. 面向机器学习专家的 MNIST 高级教程 如果你已经对其它深度学习软件比较熟悉, 并且也对 MNIST 很熟悉, 这篇教程能够引导你对 TensorFl

TensorFlow教程之完整教程 2.4 MNIST进阶

本文档为TensorFlow参考文档,本转载已得到TensorFlow中文社区授权. 深入MNIST TensorFlow是一个非常强大的用来做大规模数值计算的库.其所擅长的任务之一就是实现以及训练深度神经网络. 在本教程中,我们将学到构建一个TensorFlow模型的基本步骤,并将通过这些步骤为MNIST构建一个深度卷积神经网络. 这个教程假设你已经熟悉神经网络和MNIST数据集. 安装 在创建模型之前,我们会先加载MNIST数据集,然后启动一个TensorFlow的session. 加载MN

TensorFlow教程之完整教程 2.8 递归神经网络

本文档为TensorFlow参考文档,本转载已得到TensorFlow中文社区授权. 循环神经网络 介绍 可以在 this great article 查看循环神经网络(RNN)以及 LSTM 的介绍. 语言模型 此教程将展示如何在高难度的语言模型中训练循环神经网络.该问题的目标是获得一个能确定语句概率的概率模型.为了做到这一点,通过之前已经给出的词语来预测后面的词语.我们将使用 PTB(Penn Tree Bank) 数据集,这是一种常用来衡量模型的基准,同时它比较小而且训练起来相对快速. 语

TensorFlow教程之进阶指南 3.5 读取数据

本文档为TensorFlow参考文档,本转载已得到TensorFlow中文社区授权. 数据读取 TensorFlow程序读取数据一共有3种方法: 供给数据(Feeding): 在TensorFlow程序运行的每一步, 让Python代码来供给数据. 从文件读取数据: 在TensorFlow图的起始, 让一个输入管线从文件中读取数据. 预加载数据: 在TensorFlow图中定义常量或变量来保存所有数据(仅适用于数据量比较小的情况). 目录 数据读取 供给数据(Feeding) 从文件读取数据 文