小白学数据分析----->渠道、运营、数据_I

学分析论坛|专注于游戏数据分析

针对本文的相关的讨论,请移步http://www.xuefenxi.com/forum.php?mod=viewthread&tid=112&extra=

上周六做了一个演讲,关于渠道、数据、运营的内容,今天开始,针对演讲的一些内容,有针对性的阐述一下。不过既然我是一个数据分析师,自然还是从数据分析角度来看待这个问题,在后期的文章中,我会加入一些案例,帮助理解。

渠道是最有效的获取潜在用户的方式

渠道存在海量的用户资源,并服务于开发者。渠道本身聚合了大量的用户,进而形成平台,成为了平台,就必然存在“货架”,而这些货架的位置是有限的资源,但是开发者对于资源争夺和需求确实强烈,这点使得渠道货架的位置变得无比重要,再者,开发者也一直认为获得了最佳的位置,就会带来不错的收益,基于此点认识,导致了渠道投放成本的增加,而渠道在寻找最佳适合渠道的产品征途上变得异常艰难。其实,开发者没有找到适合自己的最佳渠道,渠道没有寻找到最适合自己用户资源的最佳产品。

最佳渠道是让产品利益最大化的方式

最佳渠道可以精准定位用户,并建立忠诚关系。说到这里,其实有两层含义,第一点,作为渠道而言,希望自己飞用户资源是最契合产品需求的,进而对于自己用户资源的把握和PUSH,决定开发者认定这个渠道是否对他是有价值的,第二,本身渠道的用户与渠道之间是否存在稳定的关系,是否对于渠道存在一定忠诚度。如果本身渠道用户在渠道中没有忠诚度,比如长期回访用户很少,谈不上忠诚度,进而即使用户从渠道了解产品,那么留存率也会受到影响。

品牌的力量

作为一个渠道也好,作为产品也罢,其实是需要品牌的。现在看到很多产品都在挣快钱,先过冬再说,这点不能说是错的,但是绝对也不是对的。

渠道需要品牌建设

针对这点来说,最简单的一句话,渠道需要回头客。一般而言,作为玩家或者普通用户,对于每一个渠道都会产生一个固定的认识,这个固定认识的其实就是品牌的影响,如果你的渠道总是提供的一些带有捆绑软件的渠道,那自然用户对于你的认识是不好的。这点就有点像那句话,今年过节不收礼,收礼只收脑白金。当用户一旦形成了对于某一个渠道的认识后,要想去改变是很困难的。

说到这里,可以多说一句,如果你的渠道其他特性没有,但是就是下载速度比别人快一倍,那么当用户体验过后,他对于你的品牌建设和认知的第一步就已经形成了,那就是这个渠道下载速度快,软件包是最新的,干净的。

渠道的品牌建设也许不需要面面俱到,但是可能一点就够。因为用户对于品牌的忠诚不需要太多理由。那么,相应的你会去挖掘自己的渠道具有以下的特点:

 

产品需要品牌

针对这点,我不想说的很多,在手游这个圈子,至少我们已经看到一些产品是具有这个品牌影响力的,如今交叉换量这种形式的出现,我想一方面是得益于交叉用户,大用户资源,但在背后的,其实还是形成的口碑,品牌在影响最终用户的行为。

要建立数据监控体系?

其实,说到数据分析监控体系,这是两个方面的工作,一方面从渠道而言,除了固有的网站分析那些之外,还要结合自己的商业逻辑设计一套数据分析指标体系,今天再次对这点不展开讨论,其实更多时候,针对这些开发者和产品,他们更需要因地制宜的数据分析模型,来优化渠道投放和策略。

无法衡量,就无法改进

这句话是说给渠道和开发者听的。现在很多时候我们会发现,市场人员往往制定的营销策略是滞后的,不能实施应对市场的变化,其实原因就是在没有监控实施变化,进而进行优化调整,这就导致了成本的不断增加。再者,推广营销人员,对于产品的把控周期太短,如果只是把KPI定在了下载激活,自然用户后续的质量,行为,就和这些人员没有关系了,自然也就不会关注产品本身的一些质量,优化问题,是否你的推广策略适合该渠道的投放。而这就是第二点,我们太多时候忽略了用户下载后的行为,对于渠道而言,当用户下载后,是否再次返回渠道,进行相关关注,是否更新等等,对于产品人员来说,是否推广用户的质量达到要求(次日、三日、七日留存率,新手通过率等等)。

数据驱动下的最佳渠道优化策略

 

目标定位

什么能做,什么不能做

两方面,第一方面,了解自己的用户到底是什么特点,是否和最初产品设计需求背离;第二点,基于产品的渠道特点是什么,渠道本身特点是什么?为此,需要建立针对目标定位的数据分析内容。

了解渠道与定位产品

 

获取数据

哪些先去做,那些后做

这点其实更多的把重心放在渠道推广的效应层面上,从宏观了解渠道推广的影响,对比自然增长阶段水平,或者对比往期推广效果。这点和目标定位是存在紧密关系的。

渠道监测

如果说获取数据是从比较粗的粒度上看待问题的话,那么渠道监测僵尸全面了解渠道的表现情况,这里将不仅仅是下载激活,还有留存率,还有付费收益等等环节,推广运营解决不是下载激活,而是带来自然的活跃和收益,并不断增长的良性循环。因为我们了解一下的事实:

 

同时,好的渠道推广运营也必然了解这条曲线:

 

关于策略优化和深度推广,将在以后的内容继续阐述。

在此先上图,关于渠道优化的点有如下:

有关于渠道深度推广部分,这里主要会将一个闭环介绍给各位,内容稍多下次再议

我这里有一些如何通过数据优化渠道推广的策略,谨在此向各位展示一下,针对这些的案例分析和描述会在后续的文章中出现。

时间: 2024-09-21 22:20:06

小白学数据分析----->渠道、运营、数据_I的相关文章

小白学数据分析----->什么是活跃_I(DAU)

最近和几个人聊天,大家对于活跃都有着自己的看法,此外因为一些标准的问题,不熟悉分析术语的很多人把活跃,留存等很多信息都搞混了.后来发现这是一个很现实的问题.在一些我 看来不是问题的问题都变成了问题了,因此在此特地说说活跃的事,帮助更多从事游戏数据分析的小白们成长. 究竟什么是活跃?在日常与外界合作过程中,我们经常日活跃.周活跃.月活跃等等信息,貌似听起来比较简单,但是真正如果自己实施操作统计数据时却发现自己又不懂这些定义,因此作为一些分析师.甚至开发人员就会发现很难去操作.以下我将描述三个活跃的

小白学数据分析----->数据指标 累计用户数的使用

小白学数据分析--à数据指标累计用户数的使用 累计用户数是指注册用户数的累计,即可以认为是新用户的累计.在一般的数据统计中,我们基本上都会涉及到这个指标,且这个指标是逐渐累加的,比如: 时间                   注册用户数[新登用户]           累计注册用户数 1日                    100                                                 100 2日                    120   

小白学数据分析------>日活跃人数分析

从今天开始,特开辟一个小专栏,题目暂定为小白学数据分析,鄙人不才,在数据分析的道路上走的崎岖坎坷,同时数据分析本身是一个多面和复杂的工作,要懂得理论(统计.概率.数据挖掘.算法.模型)更要懂得业务,懂得行业理论,还要有灵活多变的思维,想想还是很复杂和麻烦的,所讲内容不但是理论,不仅是数据,尽量把这些东西综合起来,立体的来看,鄙人水平有限,很多的内容是尝试和改进,参考了很多的材料,在木有高人指点和牛人帮助的情况下,我只能借助浩瀚的网络知识和自己的悟性,今天决心拿出来给各位主要是帮助大家和我一起进步

小白学数据分析----->付费用户的金字塔模型实践操作

免费游戏中付费用户模型分析 最近看了不少文章,对于付费用户的模型也有了很深刻的理解和认识,早先我做了不少关于大R,中间R,低端R用户的分析,想来还是觉得草草了事,近来有网友提出来,理论探讨的多了些,实践上手的东西少了点,毕竟还是叫做小白学数据分析啊,今天就把以前说过的付费用户的模型具体的实践一下. 感悟和理论 得到的灵感首先要感谢Nicholas Lovell 的这篇文章,是我得到了一些处理和分析这个模型的办法.连接如下: http://www.gamesbrief.com/2011/11/wh

小白学数据分析-----> 利用SPSS对DAU/MAU进行比率分析

最近在看几个数据分析平台的数据,基本上都有DAU/MAU这个指标,这个指标很早之前就在社交游戏平台得以广泛使用,对于这个指标的一些解析,以前有写过,今天换个角度,通过比率分析来具体的分析一下这个DAU/MAU.或许从中你会得到一些其他的信息. DAU/MAU的传统分析与局限性 首先,我们来看一下这个图: 此图总结的是2011年12月25日到2012年9月19日的DAU/MAU的比值曲线图,可以看到初期的的变化比较剧烈,这点是因为刚刚开始测试,初期的DAU导入速度比MAU导入速度更快一些,因此此时

小白学数据分析----->留存率与运营活动分析_I

有关留存率的事情最近扯得比较多,因为在分析数据的时候,越发觉得,分析一定是要来解决问题的,留存率不知何时突然变得流行了,在此讨论留存率倒不是因为流行,而是觉得以留存率为核心,的确是可以帮助我们解决不少的问题,但前提是,不要只停留在你所知道的次日,3日,7日留存率就OK,因为纵然你知道与benchmarks是差距,如果只抱着这个指标,你依然不知道自己该怎么做.下面会给大家一张图,让小白们看到,真正懂得要如何看待和分析留存率的,恰好,也验证我之前的一个观点. 公测100+周,各周新用户在他们各自生命

小白学数据分析----->基于数据驱动的最佳渠道评估策略

对于游戏数据分析来说,我们要从很多方面下手,具体从数据分析角度来说,作为游戏CP需要作三块工作,第一是游戏推广,第二是游戏质量,第三是游戏运营,就这三点来看,推广是未来游戏是否有稳定人气,获得稳定收入的关键一环. 关于手机游戏的渠道分析,是很重要的分析方向,对于这一点,其实无论是端游,页游还是如今火热的手游都是一样的,也确实是作为游戏CP很头疼的事情.原因很多,就手机游戏来看,比如苹果商店的封闭性,不能进行多渠道的转化追踪:而多渠道时(比如国内现在的多个安卓渠道),追踪转化分析又太过麻烦,基本上

小白学数据分析----->如何设计和分析数据指标

今天说到的这个题目,看起来有点大,不过作为游戏数据分析师,早晚都要设计和分析数据指标.在<移动游戏运营数据分析指标白皮书>(http://www.xuefenxi.com/forum.php?mod=viewthread&tid=2&extra=page%3D1)中,提炼了一些针对游戏数据分析的指标,这只是分析工作的第一步,还要有效的组织起来,并按照需求进行细分,即按需进行二次设计和分析.白皮书的指标旨在规范大家对于一些最基本最常用概念的认识和学习,有所领悟,有所发挥. 而今天

小白学数据分析-----&gt;留存率使用的窘境_I

随着移动游戏整体的火热,现在看到太多的数据,太多信息,很多时候我们仰慕和钦佩别人的成功,我们总是把这个行业达成所谓共识的一些数据来出来说明问题.因为我们笃信数据是有力的证据,并且可以说明实力.然而太多的时候,因为沾染了更多的外在气氛,以至于在一些情况下看不到自己接下来的清晰的方向.比如今天说的留存率问题. 关于留存率,之前也谈到了很多,包括计算标准和使用方法,不过细心的人应该懂得那些只是一个最初级的阶段,因为即使你知道的留存率是什么,但是你会发现你依旧不知道要去做什么?原因在于,你觉得大家都在谈