为IoT和大数据项目分配IT资源

大数据和物联网项目给IT基础架构带来了前所未有的压力。

Internet of Things(IoT) 和大数据应用已经给网络和存储架构带来了压力,更不用说这还需要IT专家使用不同的技能和工具来管理这些新的部署了。

虽然执行起来很有挑战性,但是也有一些为IT团队而设的指导方针来帮助他们托管IoT和大数据。这得从审查基础架构中大规模、数据密集型的项目需求开始。

更多的处理能力

一旦项目进入到具体的实施阶段,IT组织连同它的硬件、软件和服务供应商很可能需要去定义合适的系统架构和操作系统,每个系统处理器的数量以及系统的数量——不管是物理的、虚拟的还是基于云的——这需要一些主动性。

大数据项目大部分是基于Windows或者Linux操作系统,架构在业界标准的x86平台服务器上的。但在一些情况下,也有一些基于大型机或者单 一厂商系统架构和操作系统的实用的工具。大多数情况下,IT团队会将业界标准的服务器使用scale-out架构做成集群,以支持需要大量计算、内存、网 络和存储的负载。

IoT项目也趋向于包含基于单一厂家的后端系统以及大型机。

要最大化可使用的处理能力,同时减少在硬件上的总体投资,需要很好地对系统、集群和其他组件进行配置。这需要很明白企业的目标以及深入了解所选的大 数据工具和NoSQL数据库。同样的,对于选择与繁杂的不同智能手机、平板、汽车和从未如此扩张的其他智能设备进行通信的工具,也需要有一定的了解。

错误配置的服务器集群或者其他基础架构的重大错失(甚至选择了错误的工具)都可能成为项目操作的阻碍并且导致项目失败。

有一些后端数据分析和报告工具在一个大集群系统里面运行,有一些则通过其他小的集群来支持:一些小集群负责存储分析需要用的原始数据,有一些小集群 负责提供将原始数据处理成有用信息的工具,另一些小集群可能被用来支持将有用的信息转换为适合的格式(表格、图形或者其他形式),提供给分析师或者数据科 学家。

IoT项目还需要增加响应客户设备,提供需求的信息、指导或帮助的功能。企业需要熟悉这些工具的专家,以及对如何使用这些工具有很全面的了解。

为自己信任的顾问和供应商投入时间,学习对选择的这些工具和方法进行技术支持需要什么。

对于内存、存储和网络的关注

仅仅增加更多的系统、内存和存储并不总能提高IoT和大数据环境的综合性能。不同的方法和工具需要不一样的系统内存和处理能力。

每一种方法和所关联的工具都有自己的限制。建设IoT和/或大数据平台的IT规划师需要对每一种考虑在内的工具所需要的资源进行调研,同时需要知道在资源充足的情况下他们会使用哪一种工具。

如果企业安装了比所选工具所需更多的内存,那么这仅仅会增加能源消耗和热量。非但不会给整体性能带来任何帮助,反而会给数据中心能源和冷却系统带来不需要的压力。

IoT和大数据平台另一个参数是存储的性能和容量。就像处理能力和内存容量一样,存储设备的选择、存储的专用能力和存储的联网方式都能对大数据产品的优化性能有帮助。在IoT技术的例子里,响应速度的快慢将直接影响到客户是否喜欢这个企业(产品)。

就和内存和计算组件一样,存储的配置也必须满足所选工具和方法的需求。不要指望简单通过添加更多存储,选择更快的设备或者升级存储网络来得到效果。即使存储性能增加了,但是也可能被网络瓶颈带来的影响抵消。

有一些大数据工具使用额外的内存能力作为数据存储的一部分,创造了内存里的数据库。这种方法能加速分析和报告的处理。但这是一种需要权衡的方法,因为如果系统没有被可依赖的电力保护着,一旦失去电力则数据也会丢失。

不要被卷入任何一种存储或者存储网络的炒作中。分析师会指出寄存于内存的数据库或者闪存存储并不会对所有情况都适合。

有一些存储虚拟化软件厂家,例如DataCore Software注意到了底层操作系统每一次只能处理一个单一的I/O请求。它的方式是通过增加软件来让操作系统能同一时间同步处理多个请求。

显而易见的是不充分提供(underprovisioned)或者设计失败的存储系统会给大数据或者IoT系统带来效果的降低。

网络架构对于任何分布式或者集群计算工具来说都是至关重要的。它的容量、延迟和性能可以促进或阻碍这类技术。和处理器、内存和存储一样,网络架构也需要细心选择。

当大数据工具需要一些数据的时候,如果网络没有足够的容量、响应慢或者对于不同类型I/O请求有偏向,那么性能就会变得很差。同样的事情对处理IoT系统里面智能设备发出的小型、突发式的请求处理上却并非如此。因此要对两种类型的请求进行平衡是一种挑战。

对于其他的组件,需要对网络媒介特性进行调研,例如Gigabit以太网或Fibre Channel,在购买网络之前进行成本/效益分析。

我曾经看到过一个项目,其目标是捕获百万级别的小型移动设备信息,并且进行分析——这是一个早期的IoT项目。这个公司发现它的网络处理在负载的时候不够快,因为网络设计之初是为了管理大型数据传输而非百万个小型数据请求的。

原文发布时间为:2016年3月23日

时间: 2024-10-22 01:09:31

为IoT和大数据项目分配IT资源的相关文章

如何为物联网和大数据项目分配IT资源

从事新的物联网和大数据项目,将要严格审查其所需的处理能力.内存.存储和联网所涉及的资源,以及如何最好地利用所需要的能力. 大数据和物联网的项目对企业的IT基础设施带来了新的压力,而不是他们的工作负载. 物联网(IOT)和大数据应用程序将会为互联网网络和存储基础设施带来压力,更不用说必须使用不同的技能和工具来管理这些部署的IT专家. 他们对于执行来说是一个挑战,但对采取对物联网和大数据托管IT团队也有一些指导原则,首先要审议大规模的数据密集型项目的基础设施需求. 更多的处理能力 一旦项目的范围成为

大数据项目如何落地之路线图探讨

今天,继续来谈一谈"大数据项目如何落地?"这个话题.从事过多个大数据项目的规划方案及项目落地工作,在这里与大家分享一些心得,主要是关于大数据项目如何成功落地并取得预期目标,也可以说这些是实践出来的观点. 对于一个大数据应用项目/产品的落地,可以大致总结为五大步骤阶段: 数据规划.数据治理.数据应用.迭代实施.商业价值.如下图: 大数据项目落地路线图 第一阶段:数据规划 一个成功的大数据项目,需要有一个良好的开端,即做好数据规划阶段的各项工作,具体包括: 战略意图:在这个阶段,要明确战略

你的大数据项目离失败有多远?

导读大数据项目的成功或许不可复制,但从失败中汲取教训同样很有意义.作者从本人实践项目入手,从商业目标.商业案例.项目管控.沟通.技能等角度分析其失败的原因. 过去六个月里,我发现大数据项目的总量正在以惊人的速度增长着,大多数与我合作过的公司都计划在接下来一年内,进一步拓展大数据项目的领域.其中,许多项目都被报以很高的期望,但大数据项目,远没有想象中那么简单.我认为,其中半数的大数据项目最终都无法达到他们的预期. 失败的原因是多方面的,许多显而易见的问题或者影响因素都会对大数据项目造成致命的打击,

Gartner警示大数据项目不应独立实施

本文讲的是Gartner警示大数据项目不应独立实施,Gartner提醒组织,不要把大数据看作是一个独立的类别;如果忽视了移动化和桌面计算的差别就很有可能存在风险;企业将数据转为现金很有商机. 谈到下周在西班牙举办的BI分析和主数据管理峰会,Gartner分析师Ted Friedman建议组织:"不要将大数据实施独立开来,要将它归为BI的整体战略中." 在新闻发布会上,Gartner声称:"随着IT组织在过去几年中所做的尝试,尤其是Hadoop DBMS产品设备的出现,应用供应

你造吗?这才是大数据项目成功的7大秘密

文章讲的是你造吗,这才是大数据项目成功的7大秘密,大数据项目的成功有哪些法宝?又有哪些陷阱会导致大数据项目的失败?本文中的三位专家将对此进行详解. 如今,许多企业都理解了大数据的构成,但是要取得大数据项目的成功则是另一回事.Gartner公司的分析师,Doug Laney. Forrester公司分析师Mike Gualtieri.International Institute for Analytics的高级研究学者,Robert Morison 都是大数据领域的专家,他们对于企业如何使用大数

运维专家:我在大数据项目中踩过的那些坑

一.主要讨论人员 提问:陈超,七牛云技术总监 回答:朱冠胤,百度资深大数据专家,连续两次百度最高奖得主. 二.引言 "坐而论道"是一个轮流问答的玩法.本文是大数据主题周中,几位国内一线专家激情问答的一部分内容.期间,各位群友也积极参与. 三.问题集锦 1.MongoDB在百度的使用场景及规模? 2.假设现在让你完全主导一个类似Hadoop的项目,你会选择哪种语言? 3.分享你在百度各种大数据项目中踩过的坑? 4.你所在团队在自研和使用开源方案的主要考虑因素? 5.新一代分布式数据库(N

掰一掰GitHub上优秀的大数据项目

VMware CEO Pat Gelsinger曾说:   数据科学是未来,大数据分析则是打开未来之门的钥匙 企业正在迅速用新技术武装自己以便从大数据项目中获益.各行业对大数据分析人才的需求也迫使我们升级自己的技能以便寻找更好的职业发展. 跳槽之前最好先搞清楚一个岗位会接触到的项目类型,这样你才能掌握所有需要的技能,工作的效率也会更高. 下面我们尽量列出了一些流行的开源大数据项目.根据它们各自的授权协议,你或许可以在个人或者商业项目中使用这些项目的源代码.写作本文的目的也就是为大家介绍一些解决大

如何在云上实现大数据项目

云计算和大数据目前都是热门话题,如何把两者结合起来即在云上实现大数据项目,这是一个新的实践领域.资深数据专家David Gillman根据自己的经验,列举了云上大数据方案需要考虑的基本要素,包括对数据构建实时索引.自由模式搜索与分析.监视数据并提供实时警告等,帮助用户更好地评估和选择解决方案. 在谈到如何实现云上大数据项目时,David强调了三个实时要素,即实时索引.实时数据和实时监控.具体来说,实时索引指的是"对所有机器数据创建通用的实时索引": 这是大多数人所认为的大数据的核心;它

一个摄影师的大数据项目

Rick Smolan是著名的摄影师和出版人,曾担任<国家地理>杂志.<时代>杂志.<生活>杂志 Newsweek(新闻周刊)>和<U.S. News & World Report(美国新闻与世界报道)>以及<财富>杂志摄影师,也曾经多次出现在TED和TEDx舞台上,这是他在2007年TED讲述一个难忘的故事:一个韩国美军遗留的混血小女孩儿,一张宿命般的照片和一段跌宕的领养传奇. 他录制有[Creative Inspirations