本文用到了查看hadoop源码,关于hadoop源码导入">Eclipse方式见第一期
一、HDFS的背景介绍
随着数据量越来越大,在一个操作系统管辖的范围存不下了,那么就分配到更多的操作系统管理的磁盘中,但是不方便管理和维护,迫切需要一种系统来管理多台机器上的文件,这就是分布式文件管理系统。
学术一点的定义就是:分布式文件系统是一种允许文件通过网络在多台主机上分享的 文件的系统,可让多机器上的多用户分享文件和存储空间。分布式文件管理系统很多,hdfsHDFS 只是其中一种。适用于一次写入、多次查询的情况,不支持并发写情况,小文件不合适。因为小文件也占用一个块,小文件越多(1000个1k文件)块越 多,NameNode压力越大。
二、 HDFS的基本概念
我们通过hadoop shell上传的文件是存放在DataNode的block中,通过linux shell是看不到文件的,只能看到block。可以一句话描述HDFS:把客户端的大文件存放在很多节点的数据块中。在这里,出现了三个关键词:文件、节点、数据块。HDFS就是围绕着这三个关键词设计的,我们在学习的时候也要紧抓住这三个关键词来学习。
三、 HDFS的基本结构之NameNode1. 作用
NameNode的作用是管理文件目录结构,接受用户的操作请求,是管理数据节点的。名字节点维护两套数据,一套是文件目录与数据块之间的关系,另一套是数据块与节点之间的关系。前一套数据是静态的,是存放在磁盘上的,通过fsimage和edits文件来维护;后一套数据是动态的,不持久放到到磁盘的,每当集群启动的时候,会自动建立这些信息,所以一般都放在内存中。
所以他是整个文件系统的管理节点。它维护着整个文件系统的文件目录树,文件/目录的元信息和每个文件对应的数据块列表。接收用户的操作请求。
文件包括:
①fsimage(文件系统镜像):元数据镜像文件。存储某一时段NameNode内存元数据信息。
②edits:操作日志文件。
③fstime:保存最近一次checkpoint的时间
以上这些文件是保存在linux的文件系统中
2. 特点
<1>是一种允许文件通过网络在多台主机上分享的文件系统,可让多机器上的多用户分享文件和存储空间。
<2>通透性。让实际上是通过网络来访问文件的动作,由程序与用户看来,就像是访问本地的磁盘一般。
<3>容错。即使系统中有某些节点脱机,整体来说系统仍然可以持续运作而不会有数据损失。
<4>适用于一次写入、多次查询的情况,不支持并发写情况,小文件不合适
3. 目录结构<1>既然NameNode维护这么多的信息,那么这些信息都存放在哪里呢?
在hadoop源代码中有个文件叫做hdfs-default.xml,如图3.1所示。
图 3.1
<2>打开这个文件
在第149行和第158行,有两个配置信息,一个是dfs.name.dir,另一个是dfs.name.edits.dir。这两个文件表示的是NameNode的核心文件fsimage和edits的存放位置,如图3.2所示。
图 3.2
在对应配置的value值有${},这是变量的表示方式,ER表达式,在程序读取文件时,会把变量的值读取出来。那么,第150行的变量hadoop.tmp.dir的值(即hadoop临时存储路径),如图3.3所示。
图 3.3
但是在我们在上一章的配置文件core-site.xml中,配置的值是/usr/local/hadoop/tmp。
<3>我们可以进入linux文件系统
执行命令 cd /usr/local/hadoop/conf,more core-site.xml查看到如图3.3所示的内容。
图 3.4
可以看出,这两个文件的存储位置是在linux文件系统的/usr/local/hadoop/tmp/dfs/name目录下。
<4>我们进入这个目录
查看这个目录的内容,如图3.5所示。
图 3.5
从图中可知,NameNode的核心文件fsimage和edits的存放在current目录下,与此同时name目录下有一个文件in_use.lock而查看其内容的时候发现,内容为空,也就是说只能有一个Namenode进程能够访问该目录,读者可以自己试一下,当没有开启hadoop时,该目录下是没有文件in_use.lock 的,当hadoop启动以后才会生成该文件。
<5>文件fsimage是NameNode的核心文件
这个文件非常重要,丢失的话,Namenode无法使用,那么如何防止该文件丢失而造成不良后果呢。我可以下再次看一下hdfs-default.xml中的一段代码如图3.6所示。
图 3.6
由其中的描述可知,该变量,决定DFS NameNode 的NameTable(fsimage)应该在本地文件系统上的存储位置。如果这是一个用逗号分隔的列表的目录,那么nametable,会被复复制到所有的目录中,来冗余(备份来保证数据的安全性)。如${hadoop.tmp.dir}/dfs/name,~/name2,~/name3,~/name4。那么fsimage会分别复制到~/name1,~/name2,~/name3,~/name4目录中。所以这些目录一般是在不同的机器,不同的磁盘,不同的文件夹上,总之越分散越好,这样能保证数据的安全性。有人会问在多台机上怎么实现呢?其实在Linux中有nfs文件共享系统,这里不做详述。
<6>看一下edits的描述
查看一下hdfs-default.xml中的一段代码如图3.7所示
图 3.7
由其中的描述可知,该变量,决定DFSNameNode的存储事务文件(edits)在本地文件系统上的位置。如果这是一个以逗号分隔的目录列表,那么,事务文件会被复制所有的目录中,来冗余。默认值是dfs.name.dir一样。(edit保存事务过程)
四、 HDFS的基本结构之DataNode1.作用 : DataNode的作用是HDFS中真正存储数据的。2. block
<1>如果一个文件非常大,比如100GB,那么怎么存储在DataNode中呢?DataNode在存储数据的时候是按照block为单位读写数据的。block是hdfs读写数据的基本单位。
<2>假设文件大小是100GB,从字节位置0开始,每64MB字节划分为一个block,依此类推,可以划分出很多的block。每个block就是64MB大小。
2.1 我们看一下org.apache.hadoop.hdfs.protocol.Block类,
这里面的属性有以下几个,如图4.1所示。
图4.1
由上图可知,类中的属性没有一个是可以存储数据的。 所以block本质上是一个逻辑概念,意味着block里面不会真正的存储数据,只是划分文件的。
2.2 为什么一定要划分为64MB大小呢?
因为这是在默认配置文件中设置的,我们查看core-default.xml文件,如图4.2所示。
图4.2
上图中的参数ds.block.name指的就是block的大小,值是67 108 864字节,可以换算为64MB。如果我们不希望使用64MB大小,可以在core-site.xml中覆盖该值。注意单位是字节。
2.3 副本
<1>副本就是备份,目的当时是为了安全。正是因为集群环境的不可靠,所以才使用副本机制来保证数据的安全性。
<2>副本的缺点就是会占用大量的存储空间。副本越多,占用的空间越多。相比数据丢失的风险,存储空间的花费还是值得的。
<3>那么,一个文件有几个副本合适呢?我们查看hdfs-default.xml文件,如图4.3所示。
图4.3
从图4.3中可以看到,默认的副本数量是3。意味着HDFS中的每个数据块都有3份。当然,每一份肯定会尽力分配在不同的DataNode服务器中。试想:如果备份的3份数据都在同一台服务器上,那么这台服务器停机了,是不是所有的数据都丢了啊?
3. 目录结构3.1 DataNode是按block来划分文件的
那么划分后的文件到底存放在哪里哪?我们查看文件core-default.xml,如图4.4所示。
图4.4
参数dfs.data.dir的值就是block存放在linux文件系统中的位置。变量hadoop.tmp.dir的值前面已经介绍了,是/usr/local/hadoop/tmp,那么dfs.data.dir的完整路径是/usr/local/hadoop/tmp/dfs/data。通过linux命令查看,结果如图4.5所示。
3.2 上传一个文件
我们首先点击PieTTY打开另一个Linux终端,上传一个文件 jdk-6u24-linux-i586.bin,文件大小为 84927175k,如图4.5所示。
图4-5
然后我们可以在原来终端,查看上传文件,就是在该Linux文件系统的/usr/local/hadoop/tmp/dfs/data目录下,如图4.6所示
图 4.6
上图中以“blk_”开头的文件就是存储数据的block。这里的命名是有规律的,除了block文件外,还有后缀是“meta”的文件,这是block的源数据文件,存放一些元数据信息。因此,上图中只有2个block文件。
注意:我们从linux磁盘上传一个完整的文件到hdfs中,这个文件在linux是可以看到的,但是上传到hdfs后,就不会有一个对应的文件存在,而是被划分成很多的block存在的。而且由于我们的hadoop安装方式是伪分布安装,只有一个节点,DataNode和NameNode都在这一个节点上,所以上传的block块最终还是在该Linux系统中。五、 HDFS的基本结构之SecondaryNode
HA的一个解决方案。但不支持热备。配置即可。由于数据操作越多edits文件膨胀越大,但不能让他无限的膨胀下去,所以要把日志过程转换出来 放到fsimage中。由于NameNode要接受用户的操作请求,必须能够快速响应用户请求,为了保证NameNode的快速响应给用户,所以将此项工 作交给了SecondaryNode,所以他也备份一部分fsimage的一部分内容。
执行过程:从NameNode上下载元数据信息(fsimage,edits),然后把二者合并,生成新的fsimage,在本地保存,并将其推送到NameNode,同时重置NameNode的edits.默认在安装在NameNode节点上,但这样...不安全!
合并原理如图5.1所示。
图 5.1
原文链接:http://www.cnblogs.com/sunddenly/p/3977896.html