C#多线程学习(六)互斥对象

如何控制好多个线程相互之间的联系,不产生冲突和重复,这需要用到互斥对象,即:System.Threading 命名空间中的 Mutex 类。

我们可以把Mutex看作一个出租车,乘客看作线程。乘客首先等车,然后上车,最后下车。当一个乘客在车上时,其他乘客就只有等他下车以后才可以上车。而线程与Mutex对象的关系也正是如此,线程使用Mutex.WaitOne()方法等待Mutex对象被释放,如果它等待的Mutex对象被释放了,它就自动拥有这个对象,直到它调用Mutex.ReleaseMutex()方法释放这个对象,而在此期间,其他想要获取这个Mutex对象的线程都只有等待。

下面这个例子使用了Mutex对象来同步四个线程,主线程等待四个线程的结束,而这四个线程的运行又是与两个Mutex对象相关联的。

其中还用到AutoResetEvent类的对象,可以把它理解为一个信号灯。这里用它的有信号状态来表示一个线程的结束。

// AutoResetEvent.Set()方法设置它为有信号状态

// AutoResetEvent.Reset()方法设置它为无信号状态

Mutex 类的程序示例:

using System;
using System.Threading;
namespace ThreadExample
{
public class MutexSample
{
   static Mutex gM1;
   static Mutex gM2;
   const int ITERS = 100;
   static AutoResetEvent Event1 = new AutoResetEvent(false);
   static AutoResetEvent Event2 = new AutoResetEvent(false);
   static AutoResetEvent Event3 = new AutoResetEvent(false);
   static AutoResetEvent Event4 = new AutoResetEvent(false);
   public static void Main(String[] args)
   {
Console.WriteLine("Mutex Sample ");
//创建一个Mutex对象,并且命名为MyMutex
gM1 = new Mutex(true,"MyMutex");
//创建一个未命名的Mutex 对象.
gM2 = new Mutex(true);
Console.WriteLine(" - Main Owns gM1 and gM2");
AutoResetEvent[] evs = new AutoResetEvent[4];
evs[0] = Event1; //为后面的线程t1,t2,t3,t4定义AutoResetEvent对象
evs[1] = Event2;
evs[2] = Event3;
evs[3] = Event4;
MutexSample tm = new MutexSample( );
Thread t1 = new Thread(new ThreadStart(tm.t1Start));
Thread t2 = new Thread(new ThreadStart(tm.t2Start));
Thread t3 = new Thread(new ThreadStart(tm.t3Start));
Thread t4 = new Thread(new ThreadStart(tm.t4Start));
t1.Start( );// 使用Mutex.WaitAll()方法等待一个Mutex数组中的对象全部被释放
t2.Start( );// 使用Mutex.WaitOne()方法等待gM1的释放
t3.Start( );// 使用Mutex.WaitAny()方法等待一个Mutex数组中任意一个对象被释放
t4.Start( );// 使用Mutex.WaitOne()方法等待gM2的释放
Thread.Sleep(2000);
Console.WriteLine(" - Main releases gM1");
gM1.ReleaseMutex( ); //线程t2,t3结束条件满足
Thread.Sleep(1000);
Console.WriteLine(" - Main releases gM2");
gM2.ReleaseMutex( ); //线程t1,t4结束条件满足
//等待所有四个线程结束
WaitHandle.WaitAll(evs);
Console.WriteLine(" Mutex Sample");
Console.ReadLine();
   }
   public void t1Start( )
   {
Console.WriteLine("t1Start started, Mutex.WaitAll(Mutex[])");
Mutex[] gMs = new Mutex[2];
gMs[0] = gM1;//创建一个Mutex数组作为Mutex.WaitAll()方法的参数
gMs[1] = gM2;
Mutex.WaitAll(gMs);//等待gM1和gM2都被释放
Thread.Sleep(2000);
Console.WriteLine("t1Start finished, Mutex.WaitAll(Mutex[]) satisfied");
Event1.Set( ); //线程结束,将Event1设置为有信号状态
   }
   public void t2Start( )
   {
Console.WriteLine("t2Start started, gM1.WaitOne( )");
gM1.WaitOne( );//等待gM1的释放
Console.WriteLine("t2Start finished, gM1.WaitOne( ) satisfied");
Event2.Set( );//线程结束,将Event2设置为有信号状态
   }
   public void t3Start( )
   {
Console.WriteLine("t3Start started, Mutex.WaitAny(Mutex[])");
Mutex[] gMs = new Mutex[2];
gMs[0] = gM1;//创建一个Mutex数组作为Mutex.WaitAny()方法的参数
gMs[1] = gM2;
Mutex.WaitAny(gMs);//等待数组中任意一个Mutex对象被释放
Console.WriteLine("t3Start finished, Mutex.WaitAny(Mutex[])");
Event3.Set( );//线程结束,将Event3设置为有信号状态
   }
   public void t4Start( )
   {
Console.WriteLine("t4Start started, gM2.WaitOne( )");
gM2.WaitOne( );//等待gM2被释放
Console.WriteLine("t4Start finished, gM2.WaitOne( )");
Event4.Set( );//线程结束,将Event4设置为有信号状态
   }
}
}

程序的输出结果:

Mutex Sample
- Main Owns gM1 and gM2
t1Start started, Mutex.WaitAll(Mutex[])
t2Start started, gM1.WaitOne( )
t3Start started, Mutex.WaitAny(Mutex[])
t4Start started, gM2.WaitOne( )
- Main releases gM1
t2Start finished, gM1.WaitOne( ) satisfied
t3Start finished, Mutex.WaitAny(Mutex[])
- Main releases gM2
t1Start finished, Mutex.WaitAll(Mutex[]) satisfied
t4Start finished, gM2.WaitOne( )
Mutex Sample

从执行结果可以很清楚地看到,线程t2,t3的运行是以gM1的释放为条件的,而t4在gM2释放后开始执行,t1则在gM1和gM2都被释放了之后才执行。Main()函数最后,使用WaitHandle等待所有的AutoResetEvent对象的信号,这些对象的信号代表相应线程的结束。

时间: 2024-11-01 01:45:22

C#多线程学习(六)互斥对象的相关文章

c++多线程编程之互斥对象(锁)的使用之----死锁

一.死锁会在什么情况发生 1.假设有如下代码    mutex;   //代表一个全局互斥对象    void  A()       {           mutex.lock();           //这里操作共享数据           B();  //这里调用B方法           mutex.unlock();          return;       }      void  B()       {           mutex.lock();           //

linux多线程学习(六)——信号量实现同步。

信号量的互斥同步都是通过PV原语来操作的,我们可以通过注册两个信号量,让它们在互斥的问题上互动,从而达到同步.通过下面实例就可以很容易理解:   #include <stdlib.h> #include <stdio.h> #include <unistd.h> #include <pthread.h> #include <semaphore.h> #include <errno.h> #define return_if_fail(p

linux多线程学习(四)——互斥锁线程控制

在前面的文章中提及到,一个进程中的多个线程是共享同一段资源的,由于线程对资源的竞争引出了锁.其中mutex是一种简单的加锁方法,这个互斥锁只有两种状态,那就是上锁和解锁,可以把互斥锁看作是某种意义上的全局变量.在某一时刻,只能有一个线程取得这个互斥上的锁,拥有上锁状态的线程可以对共享资源进行操作,而其他线程在该线程未解锁之前,够会被挂起,直到上锁的线程解开锁.可以这么说,互斥锁使得共享资源按序的在各个线程上操作. 互斥锁的操作主要包括互斥锁初始化.上锁.判断上锁.解锁.摧毁互斥锁.其中互斥锁可以

艾伟:C#多线程学习(四) 多线程的自动管理(线程池)

本系列文章导航 C#多线程学习(一) 多线程的相关概念 C#多线程学习(二) 如何操纵一个线程 C#多线程学习(三) 生产者和消费者 C#多线程学习(四) 多线程的自动管理(线程池) C#多线程学习(五) 多线程的自动管理(定时器) C#多线程学习(六) 互斥对象 在多线程的程序中,经常会出现两种情况: 一种情况: 应用程序中,线程把大部分的时间花费在等待状态,等待某个事件发生,然后才能给予响应 这一般使用ThreadPool(线程池)来解决: 另一种情况:线程平时都处于休眠状态,只是周期性地被

艾伟:C#多线程学习(五) 多线程的自动管理(定时器)

本系列文章导航 C#多线程学习(一) 多线程的相关概念 C#多线程学习(二) 如何操纵一个线程 C#多线程学习(三) 生产者和消费者 C#多线程学习(四) 多线程的自动管理(线程池) C#多线程学习(五) 多线程的自动管理(定时器) C#多线程学习(六) 互斥对象 Timer类:设置一个定时器,定时执行用户指定的函数. 定时器启动后,系统将自动建立一个新的线程,执行用户指定的函数. 初始化一个Timer对象: Timer timer = new Timer(timerDelegate, s,10

Java多线程学习(吐血超详细总结)

  本文主要讲了java中多线程的使用方法.线程同步.线程数据传递.线程状态及相应的一些线程函数用法.概述等.在这之前,首先让我们来了解下在操作系统中进程和线程的区别: 进程:每个进程都有独立的代码和数据空间(进程上下文),进程间的切换会有较大的开销,一个进程包含1--n个线程.(进程是资源分配的最小单位) 线程:同一类线程共享代码和数据空间,每个线程有独立的运行栈和程序计数器(PC),线程切换开销小.(线程是cpu调度的最小单位) 线程和进程一样分为五个阶段:创建.就绪.运行.阻塞.终止. 多

Java 多线程学习详细总结_java

目录(?)[-] 一扩展javalangThread类 二实现javalangRunnable接口 三Thread和Runnable的区别 四线程状态转换 五线程调度 六常用函数说明 使用方式 为什么要用join方法 七常见线程名词解释 八线程同步 九线程数据传递      本文主要讲了java中多线程的使用方法.线程同步.线程数据传递.线程状态及相应的一些线程函数用法.概述等. 首先讲一下进程和线程的区别: 进程:每个进程都有独立的代码和数据空间(进程上下文),进程间的切换会有较大的开销,一个

Java多线程编程之访问共享对象和数据的方法_java

多个线程访问共享对象和数据的方式有两种情况: 1.每个线程执行的代码相同,例如,卖票:多个窗口同时卖这100张票,这100张票需要多个线程共享. 2.每个线程执行的代码不同,例如:设计四个线程,其中两个线程每次对j增加1,另外两个线程每次对j减少1. a.如果每个线程执行的代码相同,可以使用同一个Runnable对象,这个对象中有共享数据.卖票就可以这样做,每个窗口都在做卖票任务,卖的票都是同一个数据(点击查看具体案例). b.如果每个线程执行的代码不同,就需要使用不同的Runnable对象,有

ASP.NET:一段比较经典的多线程学习代码

asp.net|比较|多线程 一段比较经典的多线程学习代码. 1.用到了多线程的同步问题. 2.用到了多线程的顺序问题. 如果有兴趣的请仔细阅读下面的代码.注意其中代码段的顺序,思考一下,这些代码的顺序能否互相调换,为什么?这应该对学习很有帮助的.为了演示,让所有的线程都Sleep了一段时间. using System.Net;using System;using System.IO;using System.Text;using System.Threading;using System.Di