HTTP 协议入门

HTTP 协议是互联网的基础协议,也是网页开发的必备知识,最新版本 HTTP/2 更是让它成为技术热点。

本文介绍 HTTP 协议的历史演变和设计思路。

一、HTTP/0.9

HTTP 是基于 TCP/IP 协议的应用层协议。它不涉及数据包(packet)传输,主要规定了客户端和服务器之间的通信格式,默认使用80端口。

最早版本是1991年发布的0.9版。该版本极其简单,只有一个命令GET。


上面命令表示,TCP 连接(connection)建立后,客户端向服务器请求(request)网页index.html。

协议规定,服务器只能回应HTML格式的字符串,不能回应别的格式。


服务器发送完毕,就关闭TCP连接。

二、HTTP/1.0

2.1 简介

1996年5月,HTTP/1.0 版本发布,内容大大增加。

首先,任何格式的内容都可以发送。这使得互联网不仅可以传输文字,还能传输图像、视频、二进制文件。这为互联网的大发展奠定了基础。

其次,除了GET命令,还引入了POST命令和HEAD命令,丰富了浏览器与服务器的互动手段。

再次,HTTP请求和回应的格式也变了。除了数据部分,每次通信都必须包括头信息(HTTP header),用来描述一些元数据。

其他的新增功能还包括状态码(status code)、多字符集支持、多部分发送(multi-part type)、权限(authorization)、缓存(cache)、内容编码(content encoding)等。

2.2 请求格式

下面是一个1.0版的HTTP请求的例子。

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5)
Accept: */*

可以看到,这个格式与0.9版有很大变化。

第一行是请求命令,必须在尾部添加协议版本(HTTP/1.0)。后面就是多行头信息,描述客户端的情况。

2.3 回应格式

服务器的回应如下。

Content-Type: text/plain
Content-Length: 137582
Expires: Thu, 05 Dec 1997 16:00:00 GMT
Last-Modified: Wed, 5 August 1996 15:55:28 GMT
Server: Apache 0.84

<html>
  <body>Hello World</body>
</html>

回应的格式是"头信息 + 一个空行(\r\n) + 数据"。其中,第一行是"协议版本 + 状态码(status code) + 状态描述"。

2.4 Content-Type 字段

关于字符的编码,1.0版规定,头信息必须是 ASCII 码,后面的数据可以是任何格式。因此,服务器回应的时候,必须告诉客户端,数据是什么格式,这就是Content-Type字段的作用。

下面是一些常见的Content-Type字段的值。

  • text/plain
  • text/html
  • text/css
  • image/jpeg
  • image/png
  • image/svg+xml
  • audio/mp4
  • video/mp4
  • application/javascript
  • application/pdf
  • application/zip
  • application/atom+xml

这些数据类型总称为MIME type,每个值包括一级类型和二级类型,之间用斜杠分隔。

除了预定义的类型,厂商也可以自定义类型。


上面的类型表明,发送的是Debian系统的二进制数据包。

MIME type还可以在尾部使用分号,添加参数。

Content-Type: text/html; charset=utf-8

上面的类型表明,发送的是网页,而且编码是UTF-8。

客户端请求的时候,可以使用Accept字段声明自己可以接受哪些数据格式。

Accept: */*

上面代码中,客户端声明自己可以接受任何格式的数据。

MIME type不仅用在HTTP协议,还可以用在其他地方,比如HTML网页。


2.5 Content-Encoding 字段

由于发送的数据可以是任何格式,因此可以把数据压缩后再发送。Content-Encoding字段说明数据的压缩方法。

Content-Encoding: gzip
Content-Encoding: compress
Content-Encoding: deflate

客户端在请求时,用Accept-Encoding字段说明自己可以接受哪些压缩方法。

Accept-Encoding: gzip, deflate

2.6 缺点

HTTP/1.0 版的主要缺点是,每个TCP连接只能发送一个请求。发送数据完毕,连接就关闭,如果还要请求其他资源,就必须再新建一个连接。

TCP连接的新建成本很高,因为需要客户端和服务器三次握手,并且开始时发送速率较慢(slow start)。所以,HTTP 1.0版本的性能比较差。随着网页加载的外部资源越来越多,这个问题就愈发突出了。

为了解决这个问题,有些浏览器在请求时,用了一个非标准的Connection字段。

Connection: keep-alive

这个字段要求服务器不要关闭TCP连接,以便其他请求复用。服务器同样回应这个字段。

Connection: keep-alive

一个可以复用的TCP连接就建立了,直到客户端或服务器主动关闭连接。但是,这不是标准字段,不同实现的行为可能不一致,因此不是根本的解决办法。

三、HTTP/1.1

1997年1月,HTTP/1.1 版本发布,只比 1.0 版本晚了半年。它进一步完善了 HTTP 协议,一直用到了20年后的今天,直到现在还是最流行的版本。

3.1 持久连接

1.1 版的最大变化,就是引入了持久连接(persistent connection),即TCP连接默认不关闭,可以被多个请求复用,不用声明Connection: keep-alive。

客户端和服务器发现对方一段时间没有活动,就可以主动关闭连接。不过,规范的做法是,客户端在最后一个请求时,发送Connection: close,明确要求服务器关闭TCP连接。

Connection: close

目前,对于同一个域名,大多数浏览器允许同时建立6个持久连接。

3.2 管道机制

1.1 版还引入了管道机制(pipelining),即在同一个TCP连接里面,客户端可以同时发送多个请求。这样就进一步改进了HTTP协议的效率。

举例来说,客户端需要请求两个资源。以前的做法是,在同一个TCP连接里面,先发送A请求,然后等待服务器做出回应,收到后再发出B请求。管道机制则是允许浏览器同时发出A请求和B请求,但是服务器还是按照顺序,先回应A请求,完成后再回应B请求。

3.3 Content-Length 字段

一个TCP连接现在可以传送多个回应,势必就要有一种机制,区分数据包是属于哪一个回应的。这就是Content-length字段的作用,声明本次回应的数据长度。

Content-Length: 3495

上面代码告诉浏览器,本次回应的长度是3495个字节,后面的字节就属于下一个回应了。

在1.0版中,Content-Length字段不是必需的,因为浏览器发现服务器关闭了TCP连接,就表明收到的数据包已经全了。

3.4 分块传输编码

使用Content-Length字段的前提条件是,服务器发送回应之前,必须知道回应的数据长度。

对于一些很耗时的动态操作来说,这意味着,服务器要等到所有操作完成,才能发送数据,显然这样的效率不高。更好的处理方法是,产生一块数据,就发送一块,采用"流模式"(stream)取代"缓存模式"(buffer)。

因此,1.1版规定可以不使用Content-Length字段,而使用"分块传输编码"(chunked transfer encoding)。只要请求或回应的头信息有Transfer-Encoding字段,就表明回应将由数量未定的数据块组成。

Transfer-Encoding: chunked

每个非空的数据块之前,会有一个16进制的数值,表示这个块的长度。最后是一个大小为0的块,就表示本次回应的数据发送完了。下面是一个例子。

Content-Type: text/plain
Transfer-Encoding: chunked

25
This is the data in the first chunk

1C
and this is the second one

3
con

8
sequence

0

3.5 其他功能

1.1版还新增了许多动词方法:PUT、PATCH、HEAD、 OPTIONS、DELETE。

另外,客户端请求的头信息新增了Host字段,用来指定服务器的域名。

Host: www.example.com

有了Host字段,就可以将请求发往同一台服务器上的不同网站,为虚拟主机的兴起打下了基础。

3.6 缺点

虽然1.1版允许复用TCP连接,但是同一个TCP连接里面,所有的数据通信是按次序进行的。服务器只有处理完一个回应,才会进行下一个回应。要是前面的回应特别慢,后面就会有许多请求排队等着。这称为"队头堵塞"(Head-of-line blocking)。

为了避免这个问题,只有两种方法:一是减少请求数,二是同时多开持久连接。这导致了很多的网页优化技巧,比如合并脚本和样式表、将图片嵌入CSS代码、域名分片(domain sharding)等等。如果HTTP协议设计得更好一些,这些额外的工作是可以避免的。

四、SPDY 协议

2009年,谷歌公开了自行研发的 SPDY 协议,主要解决 HTTP/1.1 效率不高的问题。

这个协议在Chrome浏览器上证明可行以后,就被当作 HTTP/2 的基础,主要特性都在 HTTP/2 之中得到继承。

五、HTTP/2

2015年,HTTP/2 发布。它不叫 HTTP/2.0,是因为标准委员会不打算再发布子版本了,下一个新版本将是 HTTP/3。

5.1 二进制协议

HTTP/1.1 版的头信息肯定是文本(ASCII编码),数据体可以是文本,也可以是二进制。HTTP/2 则是一个彻底的二进制协议,头信息和数据体都是二进制,并且统称为"帧"(frame):头信息帧和数据帧。

二进制协议的一个好处是,可以定义额外的帧。HTTP/2 定义了近十种帧,为将来的高级应用打好了基础。如果使用文本实现这种功能,解析数据将会变得非常麻烦,二进制解析则方便得多。

5.2 多工

HTTP/2 复用TCP连接,在一个连接里,客户端和浏览器都可以同时发送多个请求或回应,而且不用按照顺序一一对应,这样就避免了"队头堵塞"。

举例来说,在一个TCP连接里面,服务器同时收到了A请求和B请求,于是先回应A请求,结果发现处理过程非常耗时,于是就发送A请求已经处理好的部分, 接着回应B请求,完成后,再发送A请求剩下的部分。

这样双向的、实时的通信,就叫做多工(Multiplexing)。

5.3 数据流

因为 HTTP/2 的数据包是不按顺序发送的,同一个连接里面连续的数据包,可能属于不同的回应。因此,必须要对数据包做标记,指出它属于哪个回应。

HTTP/2 将每个请求或回应的所有数据包,称为一个数据流(stream)。每个数据流都有一个独一无二的编号。数据包发送的时候,都必须标记数据流ID,用来区分它属于哪个数据流。另外还规定,客户端发出的数据流,ID一律为奇数,服务器发出的,ID为偶数。

数据流发送到一半的时候,客户端和服务器都可以发送信号(RST_STREAM帧),取消这个数据流。1.1版取消数据流的唯一方法,就是关闭TCP连接。这就是说,HTTP/2 可以取消某一次请求,同时保证TCP连接还打开着,可以被其他请求使用。

客户端还可以指定数据流的优先级。优先级越高,服务器就会越早回应。

5.4 头信息压缩

HTTP 协议不带有状态,每次请求都必须附上所有信息。所以,请求的很多字段都是重复的,比如Cookie和User Agent,一模一样的内容,每次请求都必须附带,这会浪费很多带宽,也影响速度。

HTTP/2 对这一点做了优化,引入了头信息压缩机制(header compression)。一方面,头信息使用gzip或compress压缩后再发送;另一方面,客户端和服务器同时维护一张头信息表,所有字段都会存入这个表,生成一个索引号,以后就不发送同样字段了,只发送索引号,这样就提高速度了。

5.5 服务器推送

HTTP/2 允许服务器未经请求,主动向客户端发送资源,这叫做服务器推送(server push)。

常见场景是客户端请求一个网页,这个网页里面包含很多静态资源。正常情况下,客户端必须收到网页后,解析HTML源码,发现有静态资源,再发出静态资源请求。其实,服务器可以预期到客户端请求网页后,很可能会再请求静态资源,所以就主动把这些静态资源随着网页一起发给客户端了。

六、参考链接

(完)

时间: 2024-10-26 10:34:46

HTTP 协议入门的相关文章

互联网协议入门(一)

我们每天使用互联网,你是否想过,它是如何实现的? 全世界几十亿台电脑,连接在一起,两两通信.上海的某一块网卡送出信号,洛杉矶的另一块网卡居然就收到了,两者实际上根本不知道对方的物理位置,你不觉得这是很神奇的事情吗? 互联网的核心是一系列协议,总称为"互联网协议"(Internet Protocol Suite).它们对电脑如何连接和组网,做出了详尽的规定.理解了这些协议,就理解了互联网的原理. 下面就是我的学习笔记.因为这些协议实在太复杂.太庞大,我想整理一个简洁的框架,帮助自己从总体

网络协议系列之十一:互联网协议入门(一)

前言 我们每天使用互联网,你是否想过,它是如何实现的? 全世界几十亿台电脑,连接在一起,两两通信.上海的某一块网卡送出信号,洛杉矶的另一块网卡居然就收到了,两者实际上根本不知道对方的物理位置,你不觉得这是很神奇的事情吗? 互联网的核心是一系列协议,总称为"互联网协议"(Internet Protocol Suite).它们对电脑如何连接和组网,做出了详尽的规定.理解了这些协议,就理解了互联网的原理. 下面就是我的学习笔记.因为这些协议实在太复杂.太庞大,我想整理一个简洁的框架,帮助自己

互联网协议入门(二)

上一篇文章分析了互联网的总体构思,从下至上,每一层协议的设计思想. 这是从设计者的角度看问题,今天我想切换到用户的角度,看看用户是如何从上至下,与这些协议互动的. ============================================================== 互联网协议入门(二) 作者:阮一峰 (接上文) 七.一个小结 先对前面的内容,做一个小结. 我们已经知道,网络通信就是交换数据包.电脑A向电脑B发送一个数据包,后者收到了,回复一个数据包,从而实现两台电脑之间的

互联网协议入门及DNS原理入门

互联网协议入门及DNS原理入门 互联网协议入门 作者: 阮一峰 日期: 2012年5月31日 我们每天使用互联网,你是否想过,它是如何实现的? 全世界几十亿台电脑,连接在一起,两两通信.上海的某一块网卡送出信号,洛杉矶的另一块网卡居然就收到了,两者实际上根本不知道对方的物理位置,你不觉得这是很神奇的事情吗? 互联网的核心是一系列协议,总称为"互联网协议"(Internet Protocol Suite).它们对电脑如何连接和组网,做出了详尽的规定.理解了这些协议,就理解了互联网的原理.

【Linux网络编程】 网络协议入门

我们每天使用互联网,每天都与网络在一起,曾是否想过网络的原理是什么?为什么能够能够实现远程通信?通过阅读本文,相信你能够揭开网络神秘的面纱. 全世界几十亿台电脑,连接在一起,相互间能够通信.北京的某一块网卡送出信号,深圳的另一块网卡居然就收到了,两者实际上根本不知道对方的物理位置,你不觉得这是很神奇的事情吗? 为了使各种不同的计算机之间可以互联,ARPANet指定了一套计算机通信协议,即TCP/IP协议( 族 ),它们对电脑如何连接和组网,做出了详尽的规定.理解了这些协议,就理解了网络的原理.

网络协议系列之十二:互联网协议入门(二)

(接上文) 七.一个小结 先对前面的内容,做一个小结. 我们已经知道,网络通信就是交换数据包.电脑A向电脑B发送一个数据包,后者收到了,回复一个数据包,从而实现两台电脑之间的通信.数据包的结构,基本上是下面这样: 发送这个包,需要知道两个地址: * 对方的MAC地址 * 对方的IP地址 有了这两个地址,数据包才能准确送到接收者手中.但是,前面说过,MAC地址有局限性,如果两台电脑不在同一个子网络,就无法知道对方的MAC地址,必须通过网关(gateway)转发. 上图中,1号电脑要向4号电脑发送一

HTTP协议入门

HTTP 协议是互联网的基础协议,也是网页开发的必备知识,最新版本 HTTP/2 更是让它成为技术热点. 本文介绍 HTTP 协议的历史演变和设计思路. 一.HTTP/0.9 HTTP 是基于 TCP/IP 协议的应用层协议.它不涉及数据包(packet)传输,主要规定了客户端和服务器之间的通信格式,默认使用80端口. 最早版本是1991年发布的0.9版.该版本极其简单,只有一个命令GET. GET /index.html  上面命令表示,TCP 连接(connection)建立后,客户端向服务

互联网协议入门详解介绍

一.概述 1.1 五层模型 互联网的实现,分成好几层.每一层都有自己的功能,就像建筑物一样,每一层都靠下一层支持. 用户接触到的,只是最上面的一层,根本没有感觉到下面的层.要理解互联网,必须从最下层开始,自下而上理解每一层的功能. 如何分层有不同的模型,有的模型分七层,有的分四层.我觉得,把互联网分成五层,比较容易解释. 如上图所示,最底下的一层叫做"实体层"(Physical Layer),最上面的一层叫做"应用层"(Application Layer),中间的三

SR采用PubSubHubbub协议实时接收GReaderSharedItems更新

郑昀 @玩聚SR 200909 早前写的注意事项.现放出来,也许对 PubSubHubbub 爱好者有帮助. 一.启用 PubSubHubbub 协议更新玩聚SR数据的好处: 快. 几乎是一个Google Reader用户分享一篇文章之后的几秒钟时间,我们就可以把数据入库. 而依靠轮询每一个用户的 Google Reader Shared Items Feed,可能需要十几乃至几十分钟才能让一个更新入库.而且随着监听的用户数越来越多,轮询会越来越慢,而且也会因为某用户分享的某一篇文章有敏感词,导