对于一些数据量较大的系统,面临的问题除了是查询效率低下,还有一个很重要的问题就是插入时间长。我们就有一个业务系统,每天的数据导入需要4-5个钟。这种费时的操作其实是很有风险的,假设程序出了问题,想重跑操作那是一件痛苦的事情。因此,提高大数据量系统的MySQL insert效率是很有必要的。
经过对MySQL的测试,发现一些可以提高insert效率的方法,供大家参考参考。
1、一条SQL语句插入多条数据。
常用的插入语句如:
INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('0', 'userid_0', 'content_0', 0); INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('1', 'userid_1', 'content_1', 1); |
修改成:
INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('0', 'userid_0', 'content_0', 0), ('1', 'userid_1', 'content_1', 1); |
修改后的插入操作能够提高程序的插入效率。这里第二种SQL执行效率高的主要原因有两个,一是减少SQL语句解析的操作,只需要解析一次就能进行数据的插入操作,二是SQL语句较短,可以减少网络传输的IO。
这里提供一些测试对比数据,分别是进行单条数据的导入与转化成一条SQL语句进行导入,分别测试1百、1千、1万条数据记录。
2、在事物中进行插入处理。
把插入修改成:
START TRANSACTION; INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('0', 'userid_0', 'content_0', 0); INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('1', 'userid_1', 'content_1', 1); ... COMMIT; |
使用事物可以提高数据的插入效率,这是因为进行一个INSERT操作时,MySQL内部会建立一个事物,在事物内进行真正插入处理。通过使用事物可以减少创建事物的消耗,所有插入都在执行后才进行提交操作。
这里也提供了测试对比,分别是不使用事物与使用事物在记录数为1百、1千、1万的情况。
性能测试:
这里提供了同时使用上面两种方法进行INSERT效率优化的测试。即多条数据合并为同一个SQL,并且在事物中进行插入。
从测试结果可以看到,insert的效率大概有50倍的提高,这个一个很客观的数字。
注意事项:
1、SQL语句是有长度限制,在进行数据合并在同一SQL中务必不能超过SQL长度限制,通过max_allowed_packe配置可以修改,默认是1M。
2、事物需要控制大小,事物太大可能会影响执行的效率。MySQL有innodb_log_buffer_size配置项,超过这个值会日志会使用磁盘数据,这时,效率会有所下降。所以比较好的做法是,在事物大小达到配置项数据级前进行事物提交。
====================================分割线================================
最新内容请见作者的GitHub页:http://qaseven.github.io/