最简单的视音频播放示例5:OpenGL播放RGB/YUV

本文记录OpenGL播放视频的技术。OpenGL是一个和Direct3D同一层面的技术。相比于Direct3D,OpenGL具有跨平台的优势。尽管在游戏领域,DirectX的影响力已渐渐超越OpenGL并被大多数PC游戏开发商所采用,但在专业高端绘图领域,OpenGL因为色彩准确,仍然是不能被取代的主角。

OpenGL简介

从网上搜集了一些有关OpenGL简介方面的知识,在这里列出来。
开放图形库(英语:Open Graphics Library,缩写为OpenGL)是个定义了一个跨编程语言、跨平台的应用程序接口(API)的规范,它用于生成二维、三维图像。
OpenGL规范由1992年成立的OpenGL架构评审委员会(ARB)维护。ARB由一些对创建一个统一的、普遍可用的API特别感兴趣的公司组成。根据OpenGL官方网站,2002年6月的ARB投票成员包括3Dlabs、Apple Computer、ATI Technologies、Dell Computer、Evans & Sutherland、Hewlett-Packard、IBM、Intel、Matrox、NVIDIA、SGI和Sun Microsystems,Microsoft曾是创立成员之一,但已于2003年3月退出。
OpenGL仍然是唯一能够取代微软对3D图形技术的完全控制的API。它仍然具有一定的生命力,但是Silicon Graphics已经不再以任何让微软不悦的方式推广OpenGL,因而它存在较高的风险。在高端的图形设备和专业应用方面OpenGL占据着统治地位(Direct3D目前还不支持)。开放源码社区(尤其是Mesa项目)一直致力于提供OpenGL支持。
 

OpenGL渲染管线

下文也是网上看的,搞懂了一部分,但是由于3D方面基础不牢固有些方面还没有完全弄懂。

OpenGL渲染管线(OpenGL Pipeline)按照特定的顺序对图形信息进行处理,这些图形信息可以分为两个部分:顶点信息(坐标、法向量等)和像素信息(图像、纹理等)。图形信息最终被写入帧缓存中,存储在帧缓存中的数据(图像),可以被应用程序获得(用于保存结果,或作为应用程序的输入等,见下图中灰色虚线)。

Display List(显示列表)
显示列表是一组OpenGL命令,被存储(编译)起来用于后续的执行。所有数据,几何(顶点)数据和像素数据都可以存入显示列表。数据和命令缓存到显示列表中可以提高性能。
Vertex Operation(顶点处理)
顶点坐标和法线坐标经过模式视图矩阵从物体坐标系(object coordinates)转换为观察坐标系(eye coordinates)。若启用了光照,对转换后的定点和法线坐标执行光照计算。光照计算更新了顶点的颜色值。

Primitive Assembly(图元装配)

顶点处理之后,基本图元(点、线、多边形)经过投影矩阵变换,再被视见体裁剪平面裁剪,从观察坐标系转换为裁剪坐标系。之后,进行透视除法(除以w)和视口变换(viewport transform),将3d场景投影到窗口坐标系。

Pixel Transfer Operation(像素操作)

像素从客户内存中解包出来之后,要经过缩放、偏移、映射、箝拉(clamping)。这些处理即为像素转换操作。转换的数据存在纹理内存或直接经过光栅化转为片段(fragment)。

Texture Memory(纹理内存)

纹理图像载入到纹理内存中,然后应用到几何对象上。 

Raterization(光栅化)

光栅化就是把几何(顶点坐标等)和像素数据转换为片段(fragment)的过程,每个片段对应于帧缓冲区中的一个像素,该像素对应屏幕上一点的颜色和不透明度信息。片段是一个矩形数组,包含了颜色、深度、线宽、点的大小等信息(反锯齿计算等)。如果渲染模式被设置为GL_FILL,多边形内部的像素信息在这个阶段会被填充。

如上图中的三角形,输入三角形的三个顶点坐标以及其颜色,顶点操作会对三角形的顶点坐标以及法向量进行变换,颜色信息不需要经过变换,但光照计算会影响顶点的颜色信息。经过光栅化后,三角形被离散为一个个点,不在是三个坐标表示,而是由一系列的点组成,每个点存储了相应的颜色、深度和不透明度等信息。
 
Fragment Operation(片段操作)
这是将片段转为帧缓冲区中的像素要进行的最后处理。首先是纹理单元(texel)生成。一个纹理单元由纹理内存中的数据生成,然后应用到每个片段上。之后进行雾计算。 雾计算完成后,还要按序进行若干片段测试,依次为蒙板(scissor)测试,alpha测试,模版(stencil)测试,深度测试。最后,执行混合,抖动,逻辑操作和遮蔽操作,最终的像素存入framebuffer。
 

OpenGL与Direct3D的对比

有关视频显示的技术在《Direct3D》文章中已经有过叙述,在这里不再重复。在网上看了一下有关于他们不同点的文章,写得简单明了,在这里引用一下:
OpenGL与Direct3D的一点点对比
OGL比D3D好的地方:
OGL是业界标准,许多非Windows操作系统下还找不到D3D
OGL的色彩比D3D的要好,表面更光滑
OGL的函数很有规律,不像D3D的,都是指针method,函数名太长了!!
OGL是右手坐标系,这是数学里用惯了的.D3D虽然也可以改变成右手坐标系,但是需要d3dx9_36.dll的支持
OGL的常用Matrix,如WorldMatrix都封装好了,D3D要自己写。
OGL的绘图方式很灵活,而D3D的则要事先定义好FVF,要等所有信息写进Stream中才绘制。这就使它产生了VertexBuffer和IndexBuffer.好象微软嫌D3D的Buffer不够多?搞的多不好学??看人家OGL,哪里要这个东西?
D3D有好多版本,要是显卡不支持就废柴一垛了。而OGL从几年前就一直没变过,所以大部分显卡都支持。
还有,我发现D3D的半透明功能有很大的问题!!就是两个半透明的物体前后顺序的问题——前面的会被后面的挡住。
 
但是D3D也有比OGL好的地方:
D3D支持许多格式的图片文件,而OGL载入jpg都得自己写代码。
因为D3D是指针调用模式,所以做D3D的钩子有难度,从而增加了外挂的制作难度。
D3D是DirectX的成员。程序员要实现声音播放可以用DirectMusic,配套用总是好的,而OGL则只能画画
D3D是被微软大力推广的连接库。相反,微软则大力压制OGL(都是Microsoft参与研制出来的产品,待遇怎这么大?)
正因为此,D3D已成为中国大型游戏界的主流(我觉得他们是盲目跟风。其实国外很多游戏都是用OGL)
 

OpenGL视频显示的流程

使用OpenGL播放视频最简单的情况下需要如下步骤:
1.       初始化

1)         初始化
2)         创建窗口
3)         设置绘图函数
4)         设置定时器
5)         进入消息循环

2.       循环显示画面

1)       调整显示位置,图像大小
2)       画图
3)       显示

在这里有一点需要说明。即OpenGL不需要使用Direct3D那种使用WinMain()作为主函数的程序初始化窗口。在Direct3D中是必须要这样做的,即使用Win32的窗口程序并且调用CreateWindow()创建一个对话框,然后才可以在对话框上绘图。OpenGL只需要使用普通的控制台程序即可(入口函数为main())。当然,OpenGL也可以像Direct3D那样把图像绘制在Win32程序的窗口中。
 
下面结合OpenGL播放YUV/RGB的示例代码,详细分析一下上文的流程。
在详述播放流程之前,再说一点自己学习OpenGL时候的一个明显的感觉:OpenGL的函数好多啊。OpenGL的函数的特点是数量多,但是每个函数的参数少。而Direct3D的特点和它正好反过来,函数少,但是每个函数的参数多。

1.       初始化

1)         初始化
glutInit()用于初始化glut库。它原型如下:

[cpp] view plaincopy

 

  1. void glutInit(int *argcp, char **argv);  

它包含两个参数:argcp和argv。一般情况下,直接把main()函数中的argc,argv传递给它即可。
在这里简单介绍OpenGL中的3个库:glu,glut,glew
glu是实用库,包含有43个函数,函数名的前缀为glu。Glu 为了减轻繁重的编程工作,封装了OpenGL函数,Glu函数通过调用核心库的函数,为开发者提供相对简单的用法,实现一些较为复杂的操作。
  glut是实用工具库,基本上是用于做窗口界面的,并且是跨平台的。

        glew是一个跨平台的扩展库。不是必需的。它能自动识别当前平台所支持的全部OpenGL高级扩展函数。还没有深入研究。

glutInitDisplayMode()用于设置初始显示模式。它的原型如下。

[cpp] view plaincopy

 

  1. void glutInitDisplayMode(unsigned int mode)  

其中mode可以选择以下值或组合:

GLUT_RGB: 指定 RGB 颜色模式的窗口
GLUT_RGBA: 指定 RGBA 颜色模式的窗口
GLUT_INDEX: 指定颜色索引模式的窗口
GLUT_SINGLE: 指定单缓存窗口
GLUT_DOUBLE: 指定双缓存窗口
GLUT_ACCUM: 窗口使用累加缓存
GLUT_ALPHA: 窗口的颜色分量包含 alpha 值
GLUT_DEPTH: 窗口使用深度缓存
GLUT_STENCIL: 窗口使用模板缓存
GLUT_MULTISAMPLE: 指定支持多样本功能的窗口
GLUT_STEREO: 指定立体窗口
GLUT_LUMINANCE: 窗口使用亮度颜色模型

需要注意的是,如果使用双缓冲(GLUT_DOUBLE),则需要用glutSwapBuffers ()绘图。如果使用单缓冲(GLUT_SINGLE),则需要用glFlush()绘图。
在使用OpenGL播放视频的时候,我们可以使用下述代码:

[cpp] view plaincopy

 

  1. glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB );  

 
2)         创建窗口
glutInitWindowPosition()用于设置窗口的位置。可以指定x,y坐标。
glutInitWindowSize()用于设置窗口的大小。可以设置窗口的宽,高。
glutCreateWindow()创建一个窗口。可以指定窗口的标题。
上述几个函数十分基础,不再详细叙述。直接贴出一段示例代码:

[cpp] view plaincopy

 

  1. glutInitWindowPosition(100, 100);  
  2. glutInitWindowSize(500, 500);  
  3. glutCreateWindow("Simplest Video Play OpenGL");        

 
3)         设置绘图函数
glutDisplayFunc()用于设置绘图函数。操作系统在必要时刻就会调用该函数对窗体进行重新绘制操作。类似于windows程序设计中处理WM_PAINT消息。例如,当把窗口移动到屏幕边上,然后又移动回来的时候,就会调用该函数对窗口进行重绘。它的原型如下。

 

[cpp] view plaincopy

 

  1. void glutDisplayFunc(void (*func)(void));  

 

其中(*func)用于指定重绘函数。

例如在视频播放的时候,指定display()函数用于重绘:

[cpp] view plaincopy

 

  1. glutDisplayFunc(&display);  

4)         设置定时器
播放视频的时候,每秒需要播放一定的画面(一般是25帧),因此使用定时器每间隔一段时间调用一下绘图函数绘制图形。定时器函数glutTimerFunc()的原型如下。

[cpp] view plaincopy

 

  1. void glutTimerFunc(unsigned int millis, void (*func)(int value), int value);  

它的参数含义如下:
millis:定时的时间,单位是毫秒。1秒=1000毫秒。
(*func)(int value):用于指定定时器调用的函数。
value:给回调函数传参。比较高端,没有接触过。
如果只在主函数中写一个glutTimerFunc()函数的话,会发现只会调用该函数一次。因此需要在回调函数中再写一个glutTimerFunc()函数,并调用回调函数自己。只有这样才能实现反反复复循环调用回调函数。
例如在视频播放的时候,指定每40毫秒调用一次timeFunc ()函数:
主函数中:

[cpp] view plaincopy

 

  1. glutTimerFunc(40, timeFunc, 0);  

而后在timeFunc()函数中如下设置。

[cpp] view plaincopy

 

  1. void timeFunc(int value){  
  2.     display();  
  3.     // Present frame every 40 ms  
  4.     glutTimerFunc(40, timeFunc, 0);  
  5. }  

这样就实现了每40ms调用一次display()。
 
5)         进入消息循环
glutMainLoop()将会进入GLUT事件处理循环。一旦被调用,这个程序将永远不会返回。视频播放的时候,调用该函数之后即开始播放视频。
 

2.       循环显示画面

1)       调整显示位置,图像大小
这一步主要是调整一下图像的大小和位置。如果不做这一步而直接使用glDrawPixels()进行绘图的话,会发现图像位于窗口的左下角,而且是上下颠倒的(当然,如果窗口和图像一样大的话,就不存在图像位于角落的问题)。效果如下图所示。

为了解决上述问题,需要调用有关的函数对图像进行变换。变换用到了两个函数:glRasterPos3f()和glPixelZoom()。
glRasterPos3f()可以平移图像。它的原型如下。

[cpp] view plaincopy

 

  1. void glRasterPos3f (GLfloat x, GLfloat y, GLfloat z);  

其中x用于指定x坐标;y用于指定y坐标。Z这里还没有用到。
在这里介绍一下OpenGL的坐标。原点位于屏幕的中心。屏幕的边上对应的值是1.0。和数学中的坐标系基本上是一样的。屏幕的左下角是(-1,-1),左上角是(-1,1)。

例如我们使用glRasterPos3f(-1.0f,0.0f,0),图像就会移动至(-1,0),如下图所示。

glPixelZoom()可以放大、缩小和翻转图像。它的原型如下。

[cpp] view plaincopy

 

  1. void glPixelZoom (GLfloat xfactor, GLfloat yfactor);  

其中xfactor、yfactor用于指定在x轴,y轴上放大的倍数(如果数值小于1则是缩小)。如果指定负值,则可以实现翻转。上文已经说过,使用OpenGL直接显示像素数据的话,会发现图像是倒着的。因此需要在Y轴方向对图像进行翻转。

例如:像素数据的宽高分别为pixel_w ,pixel_h ;窗口大小为screen_w,screen_h的话,使用下述代码可以将图像拉伸至窗口大小,并且翻转:

[cpp] view plaincopy

 

  1. glPixelZoom((float)screen_w/(float)pixel_w, -(float)screen_h/pixel_h);  

结合上述两个函数,即“平移+翻转+拉伸之后”,就可以得到全屏的图像了,如下图所示。

 

PS:这个方法属于比较笨的方法,应该还有更好的方法吧。不过再没有进行深入研究了。

 

2)       画图
使用glDrawPixels()可以绘制指定内存中的像素数据。该函数的原型如下。

[cpp] view plaincopy

 

  1. void glDrawPixels (  
  2. GLsizei width, GLsizei height,  
  3. GLenum format,  
  4. GLenum type,  
  5. const GLvoid *pixels);  

该函数的参数的含义如下所示:
Width:像素数据的宽。
Height:像素数据的高。
Format:像素数据的格式,例如GL_RGB,GL_BGR,GL_BGRA等。
Type:像素数据在内存中的格式。
Pixels:指针,指向存储像素数据的内存。
例如绘制RGB24格式的数据,宽为pixel_w,高为pixel_h,像素数据存储在buffer中。可以使用如下代码。

[cpp] view plaincopy

 

  1. glDrawPixels(pixel_w, pixel_h,GL_RGB, GL_UNSIGNED_BYTE, buffer);  

 
3)       显示
使用双缓冲的时候,调用函数glutSwapBuffers()进行显示。
使用单缓冲的时候,调用函数glFlush()进行显示。
 
 

视频显示的流程总结

视频显示的函数调用结构可以总结为下图

 

代码

贴上源代码。

 

[cpp] view plaincopy

 

  1. /** 
  2.  * 最简单的OpenGL播放视频的例子(OpenGL播放RGB/YUV) 
  3.  * Simplest Video Play OpenGL (OpenGL play RGB/YUV)  
  4.  * 
  5.  * 雷霄骅 Lei Xiaohua 
  6.  * leixiaohua1020@126.com 
  7.  * 中国传媒大学/数字电视技术 
  8.  * Communication University of China / Digital TV Technology 
  9.  * http://blog.csdn.net/leixiaohua1020 
  10.  * 
  11.  * 本程序使用OpenGL播放RGB/YUV视频像素数据。本程序实际上只能 
  12.  * 播放RGB(RGB24,BGR24,BGRA)数据。如果输入数据为YUV420P 
  13.  * 数据的话,需要先转换为RGB数据之后再进行播放。 
  14.  * 本程序是最简单的使用OpenGL播放像素数据的例子,适合OpenGL新手学习。 
  15.  * 
  16.  * 函数调用步骤如下:  
  17.  * 
  18.  * [初始化] 
  19.  * glutInit(): 初始化glut库。 
  20.  * glutInitDisplayMode(): 设置显示模式。 
  21.  * glutCreateWindow(): 创建一个窗口。 
  22.  * glutDisplayFunc(): 设置绘图函数(重绘的时候调用)。 
  23.  * glutTimerFunc(): 设置定时器。 
  24.  * glutMainLoop(): 进入消息循环。 
  25.  * 
  26.  * [循环渲染数据] 
  27.  * glRasterPos3f(),glPixelZoom(): 调整显示位置,图像大小。 
  28.  * glDrawPixels(): 绘制。 
  29.  * glutSwapBuffers(): 显示。 
  30.  * 
  31.  * This software plays RGB/YUV raw video data using OpenGL. This 
  32.  * software support show RGB (RGB24, BGR24, BGRA) data on the screen. 
  33.  * If the input data is YUV420P, it need to be convert to RGB first. 
  34.  * This program is the simplest example about play raw video data 
  35.  * using OpenGL, Suitable for the beginner of OpenGL. 
  36.  * 
  37.  * The process is shown as follows: 
  38.  * 
  39.  * [Init] 
  40.  * glutInit(): Init glut library. 
  41.  * glutInitDisplayMode(): Set display mode. 
  42.  * glutCreateWindow(): Create a window. 
  43.  * glutDisplayFunc(): Set the display callback. 
  44.  * glutTimerFunc(): Set timer. 
  45.  * glutMainLoop(): Start message loop. 
  46.  * 
  47.  * [Loop to Render data] 
  48.  * glRasterPos3f(),glPixelZoom(): Change picture's size and position. 
  49.  * glDrawPixels(): draw. 
  50.  * glutSwapBuffers(): show. 
  51.  */  
  52.   
  53. #include <stdio.h>  
  54.   
  55. #include "glew.h"  
  56. #include "glut.h"  
  57.   
  58. #include <stdlib.h>  
  59. #include <malloc.h>  
  60. #include <string.h>  
  61.   
  62. //set '1' to choose a type of file to play  
  63. #define LOAD_RGB24   1  
  64. #define LOAD_BGR24   0  
  65. #define LOAD_BGRA    0  
  66. #define LOAD_YUV420P 0  
  67.   
  68. int screen_w=500,screen_h=500;  
  69. const int pixel_w = 320, pixel_h = 180;  
  70. //Bit per Pixel  
  71. #if LOAD_BGRA  
  72. const int bpp=32;  
  73. #elif LOAD_RGB24|LOAD_BGR24  
  74. const int bpp=24;  
  75. #elif LOAD_YUV420P  
  76. const int bpp=12;  
  77. #endif  
  78. //YUV file  
  79. FILE *fp = NULL;  
  80. unsigned char buffer[pixel_w*pixel_h*bpp/8];  
  81. unsigned char buffer_convert[pixel_w*pixel_h*3];  
  82.   
  83. inline unsigned char CONVERT_ADJUST(double tmp)  
  84. {  
  85.     return (unsigned char)((tmp >= 0 && tmp <= 255)?tmp:(tmp < 0 ? 0 : 255));  
  86. }  
  87. //YUV420P to RGB24  
  88. void CONVERT_YUV420PtoRGB24(unsigned char* yuv_src,unsigned char* rgb_dst,int nWidth,int nHeight)  
  89. {  
  90.     unsigned char *tmpbuf=(unsigned char *)malloc(nWidth*nHeight*3);  
  91.     unsigned char Y,U,V,R,G,B;  
  92.     unsigned char* y_planar,*u_planar,*v_planar;  
  93.     int rgb_width , u_width;  
  94.     rgb_width = nWidth * 3;  
  95.     u_width = (nWidth >> 1);  
  96.     int ypSize = nWidth * nHeight;  
  97.     int upSize = (ypSize>>2);  
  98.     int offSet = 0;  
  99.   
  100.     y_planar = yuv_src;  
  101.     u_planar = yuv_src + ypSize;  
  102.     v_planar = u_planar + upSize;  
  103.   
  104.     for(int i = 0; i < nHeight; i++)  
  105.     {  
  106.         for(int j = 0; j < nWidth; j ++)  
  107.         {  
  108.             // Get the Y value from the y planar  
  109.             Y = *(y_planar + nWidth * i + j);  
  110.             // Get the V value from the u planar  
  111.             offSet = (i>>1) * (u_width) + (j>>1);  
  112.             V = *(u_planar + offSet);  
  113.             // Get the U value from the v planar  
  114.             U = *(v_planar + offSet);  
  115.   
  116.             // Cacular the R,G,B values  
  117.             // Method 1  
  118.             R = CONVERT_ADJUST((Y + (1.4075 * (V - 128))));  
  119.             G = CONVERT_ADJUST((Y - (0.3455 * (U - 128) - 0.7169 * (V - 128))));  
  120.             B = CONVERT_ADJUST((Y + (1.7790 * (U - 128))));  
  121.             /* 
  122.             // The following formulas are from MicroSoft' MSDN 
  123.             int C,D,E; 
  124.             // Method 2 
  125.             C = Y - 16; 
  126.             D = U - 128; 
  127.             E = V - 128; 
  128.             R = CONVERT_ADJUST(( 298 * C + 409 * E + 128) >> 8); 
  129.             G = CONVERT_ADJUST(( 298 * C - 100 * D - 208 * E + 128) >> 8); 
  130.             B = CONVERT_ADJUST(( 298 * C + 516 * D + 128) >> 8); 
  131.             R = ((R - 128) * .6 + 128 )>255?255:(R - 128) * .6 + 128;  
  132.             G = ((G - 128) * .6 + 128 )>255?255:(G - 128) * .6 + 128;  
  133.             B = ((B - 128) * .6 + 128 )>255?255:(B - 128) * .6 + 128;  
  134.             */  
  135.             offSet = rgb_width * i + j * 3;  
  136.   
  137.             rgb_dst[offSet] = B;  
  138.             rgb_dst[offSet + 1] = G;  
  139.             rgb_dst[offSet + 2] = R;  
  140.         }  
  141.     }  
  142.     free(tmpbuf);  
  143. }  
  144.   
  145. void display(void){  
  146.     if (fread(buffer, 1, pixel_w*pixel_h*bpp/8, fp) != pixel_w*pixel_h*bpp/8){  
  147.         // Loop  
  148.         fseek(fp, 0, SEEK_SET);  
  149.         fread(buffer, 1, pixel_w*pixel_h*bpp/8, fp);  
  150.     }  
  151.   
  152.     //Make picture full of window  
  153.     //Move to(-1.0,1.0)  
  154.     glRasterPos3f(-1.0f,1.0f,0);  
  155.     //Zoom, Flip  
  156.     glPixelZoom((float)screen_w/(float)pixel_w, -(float)screen_h/(float)pixel_h);  
  157.       
  158.   
  159.   
  160. #if LOAD_BGRA  
  161.     glDrawPixels(pixel_w, pixel_h,GL_BGRA, GL_UNSIGNED_BYTE, buffer);  
  162. #elif LOAD_RGB24  
  163.     glDrawPixels(pixel_w, pixel_h,GL_RGB, GL_UNSIGNED_BYTE, buffer);  
  164. #elif LOAD_BGR24  
  165.     glDrawPixels(pixel_w, pixel_h,GL_BGR_EXT, GL_UNSIGNED_BYTE, buffer);  
  166. #elif LOAD_YUV420P  
  167.     CONVERT_YUV420PtoRGB24(buffer,buffer_convert,pixel_w,pixel_h);  
  168.     glDrawPixels(pixel_w, pixel_h,GL_RGB, GL_UNSIGNED_BYTE, buffer_convert);  
  169. #endif  
  170.     //GLUT_DOUBLE  
  171.     glutSwapBuffers();  
  172.   
  173.     //GLUT_SINGLE  
  174.     //glFlush();  
  175. }  
  176.   
  177. void timeFunc(int value){  
  178.     display();  
  179.     // Present frame every 40 ms  
  180.     glutTimerFunc(40, timeFunc, 0);  
  181. }  
  182.   
  183.   
  184.   
  185. int main(int argc, char* argv[])  
  186. {  
  187. #if LOAD_BGRA  
  188.     fp=fopen("../test_bgra_320x180.rgb","rb+");  
  189. #elif LOAD_RGB24  
  190.     fp=fopen("../test_rgb24_320x180.rgb","rb+");  
  191. #elif LOAD_BGR24  
  192.     fp=fopen("../test_bgr24_320x180.rgb","rb+");  
  193. #elif LOAD_YUV420P  
  194.     fp=fopen("../test_yuv420p_320x180.yuv","rb+");  
  195. #endif  
  196.     if(fp==NULL){  
  197.         printf("Cannot open this file.\n");  
  198.         return -1;  
  199.     }  
  200.   
  201.     // GLUT init  
  202.     glutInit(&argc, argv);    
  203.     //Double, Use glutSwapBuffers() to show  
  204.     glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB );  
  205.     //Single, Use glFlush() to show  
  206.     //glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB );  
  207.   
  208.     glutInitWindowPosition(100, 100);  
  209.     glutInitWindowSize(screen_w, screen_h);  
  210.     glutCreateWindow("Simplest Video Play OpenGL");  
  211.     printf("Simplest Video Play OpenGL\n");  
  212.     printf("Lei Xiaohua\n");  
  213.     printf("http://blog.csdn.net/leixiaohua1020\n");  
  214.     printf("OpenGL Version: %s\n", glGetString(GL_VERSION));  
  215.   
  216.     glutDisplayFunc(&display);  
  217.     glutTimerFunc(40, timeFunc, 0);   
  218.       
  219.     // Start!  
  220.     glutMainLoop();  
  221.   
  222.     return 0;  
  223. }  

 

 

 

 

代码注意事项

1.       可以通过设置定义在文件开始出的宏,决定读取哪个格式的像素数据(bgra,rgb24,bgr24,yuv420p)。
 

[cpp] view plaincopy

 

  1. //set '1' to choose a type of file to play  
  2. #define LOAD_RGB24   1  
  3. #define LOAD_BGR24   0  
  4. #define LOAD_BGRA    0  
  5. #define LOAD_YUV420P 0  

 
2.       窗口的宽高为screen_w,screen_h。像素数据的宽高为pixel_w,pixel_h。它们的定义如下。
 

[cpp] view plaincopy

 

  1. //Width, Height  
  2. const int screen_w=500,screen_h=500;  
  3. const int pixel_w=320,pixel_h=180;  

3.       注意显示方式的不同
BGRA,BGR24,RGB24这3种格式可以直接在glDrawPixels()中设置像素格式显示出来。而YUV420P是不能直接显示出来的。本文示例采用的方式是先将YUV420P转换成RGB24,然后进行显示。

运行结果

无论选择加载哪个文件,运行结果都是一样的,如下图所示。

 

下载

代码位于“Simplest Media Play”中
 
 

SourceForge项目地址:https://sourceforge.net/projects/simplestmediaplay/

CSDN下载地址:http://download.csdn.net/detail/leixiaohua1020/8054395

 
 

上述工程包含了使用各种API(Direct3D,OpenGL,GDI,DirectSound,SDL2)播放多媒体例子。其中音频输入为PCM采样数据。输出至系统的声卡播放出来。视频输入为YUV/RGB像素数据。输出至显示器上的一个窗口播放出来。

通过本工程的代码初学者可以快速学习使用这几个API播放视频和音频的技术。

一共包括了如下几个子工程:

simplest_audio_play_directsound:         使用DirectSound播放PCM音频采样数据。
simplest_audio_play_sdl2:                       使用SDL2播放PCM音频采样数据。
simplest_video_play_direct3d:                使用Direct3D的Surface播放RGB/YUV视频像素数据。
simplest_video_play_direct3d_texture:使用Direct3D的Texture播放RGB视频像素数据。
simplest_video_play_gdi:                          使用GDI播放RGB/YUV视频像素数据。
simplest_video_play_opengl:                   使用OpenGL播放RGB/YUV视频像素数据。
simplest_video_play_opengl_texture:    使用OpenGL的Texture播放YUV视频像素数据。
simplest_video_play_sdl2:                        使用SDL2播放RGB/YUV视频像素数据。
 

 

from:http://blog.csdn.net/leixiaohua1020/article/details/40333583

时间: 2024-10-23 07:04:25

最简单的视音频播放示例5:OpenGL播放RGB/YUV的相关文章

最简单的视音频播放示例7:SDL2播放RGB/YUV

本文记录SDL播放视频的技术.在这里使用的版本是SDL2.实际上SDL本身并不提供视音频播放的功能,它只是封装了视音频播放的底层API.在Windows平台下,SDL封装了Direct3D这类的API用于播放视频:封装了DirectSound这类的API用于播放音频.因为SDL的编写目的就是简化视音频播放的开发难度,所以使用SDL播放视频(YUV/RGB)和音频(PCM)数据非常的容易.下文记录一下使用SDL播放视频数据的技术.   SDL简介 SDL(Simple DirectMedia La

最简单的视音频播放示例6:OpenGL播放YUV420P(通过Texture,使用Shader)

本文记录OpenGL播放视频的技术.上一篇文章中,介绍了一种简单的使用OpenGL显示视频的方式.但是那还不是OpenGL显示视频技术的精髓.和Direct3D一样,OpenGL更好的显示视频的方式也是通过纹理(Texture).本文介绍OpenGL通过纹理的方式显示视频的技术. OpenGL中坐标和Direct3D坐标的不同 OpenGL中的纹理的坐标和Direct3D中的坐标是不一样的. 在Direct3D中.纹理坐标如下图所示.取值是0到1.坐标系原点在左上角. 物体表面坐标如下图所示.取

最简单的视音频播放示例1:总述

前言 最近研究了一下Windows平台下的视音频播放的技术.在Windows平台下的视频播放技术主要有以下三种:GDI,Direct3D和OpenGL:音频播放技术主要是DirectSound.这些技术属于比较底层的技术,因此使用起来相对来说还是比较复杂的.我在学习的过程中也发现这一领域一直缺少比较简单直观的示例程序,因此打算做些示例程序,同时写一些相关的文章,方便这一领域的人学习相关的知识. 打算重点记录一下视频播放的技术.之前的研究一直集中于视频的编解码方面的技术,而很少接触到视频播放显示方

最简单的视音频播放示例9:SDL2播放PCM

本文记录SDL播放音频的技术.在这里使用的版本是SDL2.实际上SDL本身并不提供视音频播放的功能,它只是封装了视音频播放的底层API.在Windows平台下,SDL封装了Direct3D这类的API用于播放视频:封装了DirectSound这类的API用于播放音频.因为SDL的编写目的就是简化视音频播放的开发难度,所以使用SDL播放视频(YUV/RGB)和音频(PCM)数据非常的容易. SDL简介 SDL(Simple DirectMedia Layer)是一套开放源代码的跨平台多媒体开发库,

最简单的视音频播放示例2:GDI播放YUV, RGB

前一篇文章对"Simplest Media Play"工程作了概括性介绍.后续几篇文章打算详细介绍每个子工程中的几种技术.在记录Direct3D,OpenGL这两种相对复杂的技术之前,打算先记录一种和它们属于同一层面的的简单的技术--GDI作为热身. GDI简介 下面这段文字摘自维基百科: 图形设备接口(Graphics Device Interface或Graphical Device Interface,缩写GDI),是微软公司视窗操作系统(Microsoft Windows)的三

最简单的视音频播放示例3:Direct3D播放YUV,RGB(通过Surface)

上一篇文章记录了GDI播放视频的技术.打算接下来写两篇文章记录Direct3D(简称D3D)播放视频的技术.Direct3D应该Windows下最常用的播放视频的技术.实际上视频播放只是Direct3D的"副业",它主要用于3D游戏制作.当前主流的游戏几乎都是使用Direct3D制作的,例如<地下城与勇士>,<穿越火线>,<英雄联盟>,<魔兽世界>,<QQ飞车>等等.使用Direct3D可以用两种方式渲染视频:Surface和

最简单的视音频播放示例8:DirectSound播放PCM

本文记录DirectSound播放音频的技术.DirectSound是Windows下最常见的音频播放技术.目前大部分的音频播放应用都是通过DirectSound来播放的.本文记录一个使用DirectSound播放PCM的例子.注:一位仁兄已经提醒我DirectSound已经计划被XAudio2取代了.后来考证了一下发现确有此事.因此在下次更新中考虑加入XAudio2播放PCM的例子.本文仍然记录一下DirectSound这位"元老".   DirectSound简介 DirectSo

HTML5视音频标签参考

本文将介绍HTML5中的视音频标签和对应的DOM对象.是相关资料的中文化版本,可以作为编写相关应用的简易中文参考手册. 一些约定 所有浏览器:指支持HTML5的常见桌面浏览器,包括IE9+.Firefox3.5+.Chrome3.0+.Oprae10.5+.Safari3.0+等等,以及常见的移动平台浏览器,包括Firefox3.5+.Chrome3.0+.Safari3.0+.此外也包括同这些浏览器采用相同内核的一系列再包装版本,如国内很多的浏览器发行版. 更新检测的浏览器版本为(2016.1

[总结]FFMPEG视音频编解码零基础学习方法--转

ffmpeg编解码学习   目录(?)[-] ffmpeg程序的使用ffmpegexeffplayexeffprobeexe 1 ffmpegexe 2 ffplayexe 3 ffprobeexe ffmpeg库的使用视频播放器 1 ffmpeg库的配置 2 最简单的视频播放器 3 相关结构体的研究 ffmpeg库的使用音频播放器 1 最简单的音频播放器 ffmpeg库的使用一个真正的播放器ffplay 1 真正的播放器 ffmpeg库的使用编码 1 编码 2 转码 ffmpeg源代码分析 F