面向云存储的非结构化数据存取 谢华成 陈向东 非结构化数据呈爆炸态势增长,现有存储技术在I/O吞吐能力.可扩展性及易管理性等方面亟待改进.存储系统以云存储和可靠性理论为基础,建立了非结构化数据的分布式存储模型,并设计了可靠度函数.采用分布式关系数据库管理系统(RDBMS)作为存储底层,将非结构化数据直接存储于数据表中,实现了非结构化数据和元数据的分离式存储和统一管理,进而提升了存储系统性能.相对于集中式存储,新系统具有较高的可用性.仿真结果显示,存储系统可靠度高且易于扩展.该分布式存储系统可应
一份来自Novell公司Ponemon研究所针对对美国94个大型企业的调查显示,平均每个公司每年花在非结构化数据处理上的成本为210万美元:而一些受到严格监管的行业,比如金融.制药.通讯和医疗行业的成本最高,每年将达到250万美元:另一个来自Unisphere Research的调查则显示,62%的受访者表示非结构化信息的产生是不可避免的,在未来十年内将超过传统数据.此外有35%的人表示,在未来的36个月里,非结构化的信息量将超过传统的关系数据. 据IDC的预测,现在全球数据量每18个月就要翻一
通过SQL Server 2008管理非结构化数据 SQL Server 技术文档 作者:Graeme Malcolm (内容主管) 技术审核员:Shan Sinha 项目编辑:Joanne Hodgins 发布日期:2007年8月 适用产品:SQL Server 2008 概述:数字化信息的增长为企业应当存储和访问业务数据的方法提供了启发.数据库作为业务应用程序的核心,必须能够同非结构化的数据进行集成,其中包括文档.图像.视频.以及其它多媒体格式.为了能够对信息生命周期进行管理,满足策略需求,
如今的企业无一不受信息泛滥的困扰,这已经不是什么秘密.我们被大量不断增长的数据包围.许多机构内的非结构化内容(从打印文档到社交媒体文章)在无节制的增长.对于许多机构而言,非结构化内容已经占到总体企业信息的 80% 或更高比例.在对纸张密集型流程挥之不去的依赖以及个人和共同使用的数字内容的混乱扩散的驱动下,此类内容不断增长. 好消息是,企业内的人员.设备和系统生成的每一则信息均可用作竞争优势.前瞻性企业已经意识到,用户与内容之间的成功互动在提高业务成果方面发挥着重要的作用.例如,在许多企业中,客户
一种分布式非结构化数据副本管理模型 林 菲,张万军,孙 勇 针对云存储系统中数据副本管理的延时响应等问题,提出一种面向非结构化数据的分布式副本管理模型.该模型采用机架选举算法,通过提高每个机架能源利用率的方法降低系统整体能耗,为绿色数据中心提供技术保障.运用多路线性散列算法,将数据副本动态均匀地分布到不同机架的不同节点中,以提高系统性能.平衡负载和资源利用率.仿真实验结果证明,与传统的全局映射法相比,该模型可以达到较高的存储与负载平衡,具有良好的扩展性和可用性. 关键词:分布式:非结构化:数据副
如今,数据分析正在成为企业发展的重要组成部分.企业必须对结构化和非结构化数据有所了解,才能更好地为业务发展做出正确决策.以下是帮助企业分析非结构化数据的10个步骤: 1.确定一个数据源 了解有利于小型企业的数据来源非常重要.企业可以使用一个或多个数据源来收集与其业务相关的信息.而从随机数据源收集数据并不是一个好办法,因为这可能会破坏数据,甚至丢失一些数据.因此,建议企业在开始收集数据之前调查相关数据源.企业可以采用一些在线大数据开发工具收集数据. 2.管理非结构化数据搜索工具 收集到的结构化或非
0. 前言 MaxCompute作为阿里云大数据平台的核心计算组件,拥有强大的计算能力,能够调度大量的节点做并行计算,同时对分布式计算中的failover,重试等均有一套行之有效的处理管理机制. 而MaxCompute SQL能在简明的语义上实现各种数据处理逻辑,在集团内外更是广为应用,在其上实现与各种数据源的互通,对于打通整个阿里云的数据生态具有重要意义.基于这一点,最近MaxCompute团队依托MaxCompute2.0系统架构,引入了非结构化数据处理框架:通过外部表,为各种数据在MaxC
在2017年的下半年谈论大数据似乎已经没有什么新意,甚至有些令人生厌了,毕竟这个词在中国已经流行太久,形形色色的产品.平台和公司早已贴满了大数据标签,而真正有价值的创新永远都是少数. 行业对于大数据的认知开始变得更加理性和客观,这是一种成熟的表现.但如果因此就认为大数据时代已经进入风平浪静的"发展期",那么我们很可能会错过一场更加波澜壮阔的变革. 被忽视的非结构化数据 在过去几年,大数据产业更多关注的是如何处理海量.多源和异构的数据,并从中获得价值,而其中绝大多数都是结构化数据.不可否
在2017年的下半年谈论大数据似乎已经没有什么新意,甚至有些令人生厌了,毕竟这个词在中国已经流行太久,形形色色的产品.平台和公司早已贴满了大数据标签,而真正有价值的创新永远都是少数. 行业对于大数据的认知开始变得更加理性和客观,这是一种成熟的表现.但如果因此就认为大数据时代已经进入风平浪静的"发展期",那么我们很可能会错过一场更加波澜壮阔的变革. 被忽视的非结构化数据 在过去几年,大数据产业更多关注的是如何处理海量.多源和异构的数据,并从中获得价值,而其中绝大多数都是结构化数据.不可否