数据结构实践——操作用邻接表存储的图

本文是针对[数据结构基础系列(7):图]的实践。

【项目 - 操作用邻接表存储的图】
假设图G采用邻接表存储,分别设计实现以下要求的算法:
(1)输出出图G中每个顶点的出度;
(2)求出图G中出度最大的一个顶点,输出该顶点编号;
(3)计算图G中出度为0的顶点数;
(4)判断图G中是否存在边<i,j>。
利用下图作为测试用图,输出结果。

提示:(1)分别设计函数实现算法;(2)不要全部实现完再测试,而是实现一个,测试一个;(3)请利用图算法库

[参考解答]

#include <stdio.h>
#include <malloc.h>
#include "graph.h"

//返回图G中编号为v的顶点的出度
int OutDegree(ALGraph *G,int v)
{
    ArcNode *p;
    int n=0;
    p=G->adjlist[v].firstarc;
    while (p!=NULL)
    {
        n++;
        p=p->nextarc;
    }
    return n;
}

//输出图G中每个顶点的出度
void OutDs(ALGraph *G)
{
    int i;
    for (i=0; i<G->n; i++)
        printf("  顶点%d:%d\n",i,OutDegree(G,i));
}

//输出图G中出度最大的一个顶点
void OutMaxDs(ALGraph *G)
{
    int maxv=0,maxds=0,i,x;
    for (i=0; i<G->n; i++)
    {
        x=OutDegree(G,i);
        if (x>maxds)
        {
            maxds=x;
            maxv=i;
        }
    }
    printf("顶点%d,出度=%d\n",maxv,maxds);
}
//输出图G中出度为0的顶点数
void ZeroDs(ALGraph *G)
{
    int i,x;
    for (i=0; i<G->n; i++)
    {
        x=OutDegree(G,i);
        if (x==0)
            printf("%2d",i);
    }
    printf("\n");
}

//返回图G中是否存在边<i,j>
bool Arc(ALGraph *G, int i,int j)
{
    ArcNode *p;
    bool found = false;
    p=G->adjlist[i].firstarc;
    while (p!=NULL)
    {
        if(p->adjvex==j)
        {
            found = true;
            break;
        }
        p=p->nextarc;
    }
    return found;
}

int main()
{
    ALGraph *G;
    int A[7][7]=
    {
        {0,1,1,1,0,0,0},
        {0,0,0,0,1,0,0},
        {0,0,0,0,1,1,0},
        {0,0,0,0,0,0,1},
        {0,0,0,0,0,0,0},
        {0,0,0,1,1,0,1},
        {0,1,0,0,0,0,0}
    };
    ArrayToList(A[0], 7, G);
    printf("(1)各顶点出度:\n");
    OutDs(G);
    printf("(2)最大出度的顶点信息:");
    OutMaxDs(G);
    printf("(3)出度为0的顶点:");
    ZeroDs(G);
    printf("(4)边<2,6>存在吗?");
    if(Arc(G,2,6))
        printf("是\n");
    else
        printf("否\n");
    printf("\n");
    return 0;
}
时间: 2024-10-24 18:51:09

数据结构实践——操作用邻接表存储的图的相关文章

【算法导论】邻接表存储的拓扑排序

        上一篇文章中讲述了用邻接矩阵存储的图的拓扑排序,下面本文介绍用邻接表存储的图的拓扑排序.         关于拓扑排序的概念及基本思想,我在上一篇文章中已经较为详细的描述了,这里不在介绍.我们知道利用邻接矩阵进行拓扑排序时,程序实现较为简单,但是效率不高,算法的复杂度为O(n^3).而利用邻接表会使入度为0的顶点的操作简化,从而提高算法的效率. 在邻接表存储结构中,为了便于检查每个顶点的入度,可在顶点表中增加一个入度域(id),这样的邻接表如下图所示,这样只需对由n个元素构成的顶

图的邻接表存储 c实现

图的邻接表存储 c实2011-10-07 10:34 4047人阅读 评论(2) 收藏 举报 存储cstruct数据结构null编程   用到的数据结构是 一个是顶点表,包括顶点和指向下一个邻接点的指针 一个是边表, 数据结构跟顶点不同,存储的是顶点的序号,和指向下一个的指针 刚开始的时候把顶点表初始化,指针指向null.然后边表插入进来,是插入到前一个,也就是直接插入到firstedge指向的下一个,而后面的后移   [cpp] view plaincopyprint? #define  Ma

图的邻接表存储结构

程序调用入口: using System; namespace Graphic_AdjacencyList { internal class Program { private static void Main(string[] args) { var adjacencyList = new AdjacencyList<char>(); Console.WriteLine("1.初始化树结构:"); Console.WriteLine("=============

在图采用邻接表存储时,求最小生成树的Prime算法的时间复杂度为?

问题描述 在图采用邻接表存储时,求最小生成树的Prime算法的时间复杂度为? 在图采用邻接表存储时,求最小生成树的Prime算法的时间复杂度为? A o(n^2) B o(n^3) C o(n) D o(n+e) 答案是o(n+e)...不理解..求过程 解决方案 不对,这题应该选A 求顶点的入度的时间复杂度为O(e)*n=O(n*e) 遍历顶点的时间复杂度是O(n^2) 相加是O(n^2+n*e)=O(n^2) 解决方案二: 详细的解释http://www.cskaoyan.com/redir

图的邻接表存储表示示例讲解_C 语言

复制代码 代码如下: //---------图的邻接表存储表示------- #include<stdio.h>#include<stdlib.h> #define MAX_VERTEXT_NUM 20 typedef int InfoType;typedef char VertextType; typedef struct ArcNode{    int adjvex;    struct ArcNode *nextArc;    InfoType *info;}ArcNode;

C++实现图的邻接表存储和广度优先遍历实例分析_C 语言

本文实例讲述了C++实现图的邻接表存储和广度优先遍历方法.分享给大家供大家参考.具体如下: 示例:建立如图所示的无向图 由上图知,该图有5个顶点,分别为a,b,c,d,e,有6条边. 示例输入(按照这个格式输入): 5 6 abcde 0 1 0 2 0 3 2 3 2 4 1 4 输入结束(此行不必输入) 注:0 1表示该图的第0个顶点和第1个定点有边相连,如上图中的a->b所示       0 2表示该图的第0个顶点和第2个定点有边相连,如上图中的a->c所示       2 3表示该图的

深度优先遍历DFS用邻接表表示的图

深度优先遍历用邻接表表示的图 DFS the Adjacency List Graph eryar@163.com 一.简介 创建了图之后,我们希望从图中某个顶点出发访遍图中其余顶点,且使每个顶点仅被访问一次.这一过程就是图的遍历(Traversing Graph).图的遍历算法是求解图的连通性问题.拓朴排序和求解关键路径等算法的基础. 深度优先搜索(Depth First Search)是一种递归的遍历方法.其过程为从图中任意一顶点出发,访问与其相连接的未被访问的顶点.因此,遍历图的过程实质上

邻接表表示的图的广度优先遍历-Breadth First Search Graph

Breadth First Search Graph eryar@163.com 一.简介 广度优先遍历类似于树的按层次遍历过程. 假设从图中某顶点V出发,在访问了V之后依次访问V的各个未曾访问过的邻接顶点,然后分别从这些邻接点出发依次访问它们的邻接点,并使"先被访问的顶点的邻接点"先于"后被访问的顶点的邻接点"被访问,直到图中所有已被访问的顶点的邻接点都被访问到.到此时图中尚有未被访问的顶点,则另选图中一个未曾访问的顶点作为始点,重复上述过程,直到图中所有顶点都被

数据结构实践——操作文件

本文是针对[数据结构基础系列(11):文件]中的实践项目. [项目1]操作文件 有若干学生的成绩数据如下,将这些数据保存到st数组中: 学号 姓名 年龄 性别 语文 数学 英语 1 陈华 20 男 78 90 84 5 张明 21 男 78 68 92 8 王英 20 女 86 81 86 3 刘丽 21 女 78 92 88 2 许可 20 男 80 83 78 4 陈军 20 男 78 88 82 7 马胜 21 男 56 67 75 基于这些数据,编程序实现下面的功能: (1)将st数组中