零基础入门深度学习(1) - 感知器

文章列表

零基础入门深度学习(1) - 感知器
零基础入门深度学习(2) - 线性单元和梯度下降
零基础入门深度学习(3) - 神经网络和反向传播算法
零基础入门深度学习(4) - 卷积神经网络
零基础入门深度学习(5) - 循环神经网络
零基础入门深度学习(6) - 长短时记忆网络(LSTM)
零基础入门深度学习(7) - 递归神经网络

深度学习是啥

在人工智能领域,有一个方法叫机器学习。在机器学习这个方法里,有一类算法叫神经网络。神经网络如下图所示:

上图中每个圆圈都是一个神经元,每条线表示神经元之间的连接。我们可以看到,上面的神经元被分成了多层,层与层之间的神经元有连接,而层内之间的神经元没有连接。最左边的层叫做输入层,这层负责接收输入数据;最右边的层叫输出层,我们可以从这层获取神经网络输出数据。输入层和输出层之间的层叫做隐藏层。

隐藏层比较多(大于2)的神经网络叫做深度神经网络。而深度学习,就是使用深层架构(比如,深度神经网络)的机器学习方法。

那么深层网络和浅层网络相比有什么优势呢?简单来说深层网络能够表达力更强。事实上,一个仅有一个隐藏层的神经网络就能拟合任何一个函数,但是它需要很多很多的神经元。而深层网络用少得多的神经元就能拟合同样的函数。也就是为了拟合一个函数,要么使用一个浅而宽的网络,要么使用一个深而窄的网络。而后者往往更节约资源。

深层网络也有劣势,就是它不太容易训练。简单的说,你需要大量的数据,很多的技巧才能训练好一个深层网络。这是个手艺活。

感知器

看到这里,如果你还是一头雾水,那也是很正常的。为了理解神经网络,我们应该先理解神经网络的组成单元——神经元。神经元也叫做感知器。感知器算法在上个世纪50-70年代很流行,也成功解决了很多问题。并且,感知器算法也是非常简单的。

感知器的定义

下图是一个感知器:

可以看到,一个感知器有如下组成部分:

输入权值 一个感知器可以接收多个输入,每个输入上有一个权值,此外还有一个偏置项,就是上图中的。

激活函数 感知器的激活函数可以有很多选择,比如我们可以选择下面这个阶跃函数来作为激活函数:

输出 感知器的输出由下面这个公式来计算



如果看完上面的公式一下子就晕了,不要紧,我们用一个简单的例子来帮助理解。

例子:用感知器实现and函数

我们设计一个感知器,让它来实现and运算。程序员都知道,and是一个二元函数(带有两个参数和),下面是它的真值表:

0 0 0
0 1 0
1 0 0
1 1 1
为了计算方便,我们用0表示false,用1表示true。这没什么难理解的,对于C语言程序员来说,这是天经地义的。

我们令,而激活函数就是前面写出来的阶跃函数,这时,感知器就相当于and函数。不明白?我们验算一下:

输入上面真值表的第一行,即,那么根据公式(1),计算输出:

也就是当都为0的时候,为0,这就是真值表的第一行。读者可以自行验证上述真值表的第二、三、四行。
例子:用感知器实现or函数

同样,我们也可以用感知器来实现or运算。仅仅需要把偏置项的值设置为-0.3就可以了。我们验算一下,下面是or运算的真值表:

0 0 0
0 1 1
1 0 1
1 1 1
我们来验算第二行,这时的输入是,带入公式(1):

也就是当时,为1,即or真值表第二行。读者可以自行验证其它行。

感知器还能做什么

事实上,感知器不仅仅能实现简单的布尔运算。它可以拟合任何的线性函数,任何线性分类或线性回归问题都可以用感知器来解决。前面的布尔运算可以看作是二分类问题,即给定一个输入,输出0(属于分类0)或1(属于分类1)。如下面所示,and运算是一个线性分类问题,即可以用一条直线把分类0(false,红叉表示)和分类1(true,绿点表示)分开。

然而,感知器却不能实现异或运算,如下图所示,异或运算不是线性的,你无法用一条直线把分类0和分类1分开。

感知器的训练

现在,你可能困惑前面的权重项和偏置项的值是如何获得的呢?这就要用到感知器训练算法:将权重项和偏置项初始化为0,然后,利用下面的感知器规则迭代的修改和,直到训练完成。

其中:

是与输入对应的权重项,是偏置项。事实上,可以把看作是值永远为1的输入所对应的权重。是训练样本的实际值,一般称之为label。而是感知器的输出值,它是根据公式(1)计算得出。是一个称为学习速率的常数,其作用是控制每一步调整权的幅度。

每次从训练数据中取出一个样本的输入向量,使用感知器计算其输出,再根据上面的规则来调整权重。每处理一个样本就调整一次权重。经过多轮迭代后(即全部的训练数据被反复处理多轮),就可以训练出感知器的权重,使之实现目标函数。

编程实战:实现感知器

完整代码请参考GitHub: https://github.com/hanbt/learn_dl/blob/master/perceptron.py (python2.7)
对于程序员来说,没有什么比亲自动手实现学得更快了,而且,很多时候一行代码抵得上千言万语。接下来我们就将实现一个感知器。

下面是一些说明:

使用python语言。python在机器学习领域用的很广泛,而且,写python程序真的很轻松。
面向对象编程。面向对象是特别好的管理复杂度的工具,应对复杂问题时,用面向对象设计方法很容易将复杂问题拆解为多个简单问题,从而解救我们的大脑。
没有使用numpy。numpy实现了很多基础算法,对于实现机器学习算法来说是个必备的工具。但为了降低读者理解的难度,下面的代码只用到了基本的python(省去您去学习numpy的时间)。
下面是感知器类的实现,非常简单。去掉注释只有27行,而且还包括为了美观(每行不超过60个字符)而增加的很多换行。

class Perceptron(object):

def __init__(self, input_num, activator):
    '''
    初始化感知器,设置输入参数的个数,以及激活函数。
    激活函数的类型为double -> double
    '''
    self.activator = activator
    # 权重向量初始化为0
    self.weights = [0.0 for _ in range(input_num)]
    # 偏置项初始化为0
    self.bias = 0.0
def __str__(self):
    '''
    打印学习到的权重、偏置项
    '''
    return 'weights\t:%s\nbias\t:%f\n' % (self.weights, self.bias)
def predict(self, input_vec):
    '''
    输入向量,输出感知器的计算结果
    '''
    # 把input_vec[x1,x2,x3...]和weights[w1,w2,w3,...]打包在一起
    # 变成[(x1,w1),(x2,w2),(x3,w3),...]
    # 然后利用map函数计算[x1*w1, x2*w2, x3*w3]
    # 最后利用reduce求和
    return self.activator(
        reduce(lambda a, b: a + b,
               map(lambda (x, w): x * w,
                   zip(input_vec, self.weights))
            , 0.0) + self.bias)
def train(self, input_vecs, labels, iteration, rate):
    '''
    输入训练数据:一组向量、与每个向量对应的label;以及训练轮数、学习率
    '''
    for i in range(iteration):
        self._one_iteration(input_vecs, labels, rate)
def _one_iteration(self, input_vecs, labels, rate):
    '''
    一次迭代,把所有的训练数据过一遍
    '''
    # 把输入和输出打包在一起,成为样本的列表[(input_vec, label), ...]
    # 而每个训练样本是(input_vec, label)
    samples = zip(input_vecs, labels)
    # 对每个样本,按照感知器规则更新权重
    for (input_vec, label) in samples:
        # 计算感知器在当前权重下的输出
        output = self.predict(input_vec)
        # 更新权重
        self._update_weights(input_vec, output, label, rate)
def _update_weights(self, input_vec, output, label, rate):
    '''
    按照感知器规则更新权重
    '''
    # 把input_vec[x1,x2,x3,...]和weights[w1,w2,w3,...]打包在一起
    # 变成[(x1,w1),(x2,w2),(x3,w3),...]
    # 然后利用感知器规则更新权重
    delta = label - output
    self.weights = map(
        lambda (x, w): w + rate * delta * x,
        zip(input_vec, self.weights))
    # 更新bias
    self.bias += rate * delta

接下来,我们利用这个感知器类去实现and函数。

def f(x):

'''
定义激活函数f
'''
return 1 if x > 0 else 0

def get_training_dataset():

'''
基于and真值表构建训练数据
'''
# 构建训练数据
# 输入向量列表
input_vecs = [[1,1], [0,0], [1,0], [0,1]]
# 期望的输出列表,注意要与输入一一对应
# [1,1] -> 1, [0,0] -> 0, [1,0] -> 0, [0,1] -> 0
labels = [1, 0, 0, 0]
return input_vecs, labels    

def train_and_perceptron():

'''
使用and真值表训练感知器
'''
# 创建感知器,输入参数个数为2(因为and是二元函数),激活函数为f
p = Perceptron(2, f)
# 训练,迭代10轮, 学习速率为0.1
input_vecs, labels = get_training_dataset()
p.train(input_vecs, labels, 10, 0.1)
#返回训练好的感知器
return p

if name == '__main__':

# 训练and感知器
and_perception = train_and_perceptron()
# 打印训练获得的权重
print and_perception
# 测试
print '1 and 1 = %d' % and_perception.predict([1, 1])
print '0 and 0 = %d' % and_perception.predict([0, 0])
print '1 and 0 = %d' % and_perception.predict([1, 0])
print '0 and 1 = %d' % and_perception.predict([0, 1])

将上述程序保存为perceptron.py文件,通过命令行执行这个程序,其运行结果为:

神奇吧!感知器竟然完全实现了and函数。读者可以尝试一下利用感知器实现其它函数。

小结

终于看(写)到小结了...,大家都累了。对于零基础的你来说,走到这里应该已经很烧脑了吧。没关系,休息一下。值得高兴的是,你终于已经走出了深度学习入门的第一步,这是巨大的进步;坏消息是,这仅仅是最简单的部分,后面还有无数艰难险阻等着你。不过,你学的困难往往意味着别人学的也困难,掌握一门高门槛的技艺,进可糊口退可装逼,是很值得的。

下一篇文章,我们将讨论另外一种感知器:线性单元,并由此引出一种可能是最最重要的优化算法:梯度下降算法。

参考资料

Tom M. Mitchell, "机器学习", 曾华军等译, 机械工业出版社

致敬原创:https://www.zybuluo.com/hanbingtao/note/433855

时间: 2024-10-22 12:23:43

零基础入门深度学习(1) - 感知器的相关文章

零基础入门深度学习(1):感知器,激活函数

零基础入门深度学习(1) - 感知器零基础入门深度学习(2) - 线性单元和梯度下降零基础入门深度学习(3) - 神经网络和反向传播算法零基础入门深度学习(4) - 卷积神经网络 零基础入门深度学习(5) - 循环神经网络. 零基础入门深度学习(6) - 长短时记忆网络(LSTM). 无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就out了?现在救

零基础入门深度学习(3) - 神经网络和反向传播算法

   神经元   神经元和感知器本质上是一样的,只不过我们说感知器的时候,它的激活函数是阶跃函数:而当我们说神经元时,激活函数往往选择为sigmoid函数或tanh函数.如下图所示:       sigmoid函数的定义如下:     将其带入前面的式子,得到     sigmoid函数是一个非线性函数,值域是(0,1).函数图像如下图所示     sigmoid函数的导数是:     可以看到,sigmoid函数的导数非常有趣,它可以用sigmoid函数自身来表示.这样,一旦计算出sigmoi

零基础入门深度学习:感应器、线性单元和梯度下降

投稿:Intelligent Software Development 团队介绍:团队成员来自一线互联网公司,工作在架构设计与优化.工程方法研究与实践的最前线,曾参与搜索.互联网广告.共有云/私有云等大型产品的设计.开发和技术优化工作.目前主要专注在机器学习.微服务架构设计.虚拟化/容器化.持续交付/DevOps等领域,希望通过先进技术和工程方法最大化提升软件和服务的竞争力.   无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的

零基础入门深度学习(二):神经网络和反向传播算法

投稿:Intelligent Software Development 团队介绍:团队成员来自一线互联网公司,工作在架构设计与优化.工程方法研究与实践的最前线,曾参与搜索.互联网广告.共有云/私有云等大型产品的设计.开发和技术优化工作.目前主要专注在机器学习.微服务架构设计.虚拟化/容器化.持续交付/DevOps等领域,希望通过先进技术和工程方法最大化提升软件和服务的竞争力.   在上一篇文章<零基础入门深度学习:感应器.线性单元和梯度下降>中,我们已经掌握了机器学习的基本套路,对模型.目标函

零基础入门深度学习(六):递归神经网络

递归神经网络是啥    因为神经网络的输入层单元个数是固定的,因此必须用循环或者递归的方式来处理长度可变的输入.循环神经网络实现了前者,通过将长度不定的输入分割为等长度的小块,然后再依次输入到网络中,从而实现了神经网络对变长输入的处理.   一个典型的例子是,当我们处理一句话时,我们可以把一句话看作是词组成的序列,然后,每次向循环神经网络输入一个词,如此循环直至整句话输入完毕,循环神经网络将产生对应的输出.如此,我们就能处理任意长度的句子了.如下图所示:     然而,有时候把句子看做是词的序列

零基础入门深度学习(6) - 长短时记忆网络(LSTM)

在上一篇文章<零基础入门深度学习(4):循环神经网络>中,我们介绍了循环神经网络以及它的训练算法.我们也介绍了循环神经网络很难训练的原因,这导致了它在实际应用中,很难处理长距离的依赖.在本文中,我们将介绍一种改进之后的循环神经网络:长短时记忆网络(Long Short Term Memory Network, LSTM),它成功地解决了原始循环神经网络的缺陷,成为当前最流行的RNN,在语音识别.图片描述.自然语言处理等许多领域中成功应用.   但不幸的一面是,LSTM的结构很复杂,因此,我们需

零基础入门深度学习(五):长短时记忆网络

在上一篇文章<零基础入门深度学习(4):循环神经网络>中,我们介绍了循环神经网络以及它的训练算法.我们也介绍了循环神经网络很难训练的原因,这导致了它在实际应用中,很难处理长距离的依赖.在本文中,我们将介绍一种改进之后的循环神经网络:长短时记忆网络(Long Short Term Memory Network, LSTM),它成功地解决了原始循环神经网络的缺陷,成为当前最流行的RNN,在语音识别.图片描述.自然语言处理等许多领域中成功应用.   但不幸的一面是,LSTM的结构很复杂,因此,我们需

零基础入门深度学习(5) - 循环神经网络

  在前面的文章系列文章中,我们介绍了全连接神经网络和卷积神经网络,以及它们的训练和使用.他们都只能单独的取处理一个个的输入,前一个输入和后一个输入是完全没有关系的.但是,某些任务需要能够更好的处理序列的信息,即前面的输入和后面的输入是有关系的.   比如,当我们在理解一句话意思时,孤立的理解这句话的每个词是不够的,我们需要处理这些词连接起来的整个序列:当我们处理视频的时候,我们也不能只单独的去分析每一帧,而要分析这些帧连接起来的整个序列.这时,就需要用到深度学习领域中另一类非常重要神经网络:循

零基础入门深度学习(三):卷积神经网络

投稿:Intelligent Software Development 团队介绍:团队成员来自一线互联网公司,工作在架构设计与优化.工程方法研究与实践的最前线,曾参与搜索.互联网广告.共有云/私有云等大型产品的设计.开发和技术优化工作.目前主要专注在机器学习.微服务架构设计.虚拟化/容器化.持续交付/DevOps等领域,希望通过先进技术和工程方法最大化提升软件和服务的竞争力.   在前面的文章中,我们介绍了全连接神经网络,以及它的训练和使用.我们用它来识别了手写数字,然而,这种结构的网络对于图像