[物理学与PDEs]第2章习题10 一维理想流体力学方程组的 Lagrange 形式

试证明: 一维理想流体力学方程组的 Lagrange 形式 (5. 22)-(5. 24) 也可写成如下形式 $$\beex \bea \cfrac{\p \tau}{\p t}-\cfrac{\p u}{\p x}&=0,\\ \cfrac{\p u}{\p t}+\cfrac{\p p}{\p x}&=F,\\ \cfrac{\p }{\p t}\sex{e+\cfrac{u^2}{2}} +\cfrac{\p}{\p x}(pu)&=Fu. \eea \eeex$$

 

证明: (1. 89) 可通过 (1. 87) 化为 $$\bex \cfrac{\p }{\p t}\sex{e+\cfrac{u^2}{2}} +u\cfrac{\p}{\p x}\sex{e+\cfrac{u^2}{2}} +\cfrac{1}{\rho}\cfrac{\p}{\p x}(pu)=Fu. \eex$$ 由 (5. 13)-(5. 14) 即得结论.

 

时间: 2024-10-15 01:59:29

[物理学与PDEs]第2章习题10 一维理想流体力学方程组的 Lagrange 形式的相关文章

[物理学与PDEs]第3章习题5 一维理想磁流体力学方程组的数学结构

试将一维理想磁流体力学方程组 (5. 10)-(5. 16) 化为一阶拟线性对称双曲组的形式. 解答: 由 (5. 12),(5. 16) 知 $$\beex \bea 0&=\cfrac{\p p}{\p \rho}\sex{\cfrac{\p \rho}{\p t}+u_1\cfrac{\p \rho}{\p x}+\rho \cfrac{\p u_1}{\p x}} +\cfrac{\p\rho}{\p S}\sex{\cfrac{\p S}{\p t}+u_1\cfrac{\p S}{\

[物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件

写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 (见第二章 $\S 4$), 并证明越过强间断线, 函数 $Z$ 保持连续.   解答:   (1)  具守恒律形式的一维反应流动力学方程组为 $$\beex \bea \cfrac{\p \rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p

[物理学与PDEs]第2章第1节 理想流体力学方程组 1.2 理想流体力学方程组

1.  质量守恒定律: 连续性方程 $$\bee\label{2_1_2_zl} \cfrac{\p\rho}{\p t}+\Div(\rho{\bf u})=0.  \eee$$   2.  动量守恒定律: $$\bee\label{2_1_2_dl} \cfrac{\p}{\p t}(\rho{\bf u})+\Div(\rho{\bf u}\otimes {\bf u}+p{\bf I})=\rho{\bf F}. \eee$$ 用 \eqref{2_1_2_zl} 可化简 \eqref{

[物理学与PDEs]第2章第1节 理想流体力学方程组 1.3 理想流体力学方程组的数学结构

1.  局部音速 $c$: $c^2=\cfrac{\p p}{\p \rho}>0$.     2.  将理想流体力学方程组 $$\beex \bea \rho\cfrac{\p {\bf u}}{\p t} +(\rho {\bf u}\cdot\n){\bf u}+\n p&=\rho{\bf F},\\ \cfrac{1}{\rho c^2}\cfrac{\p p}{\p t} +\n\cdot{\bf u}+\cfrac{1}{\rho c^2}({\bf u}\cdot\n)p&

[物理学与PDEs]第2章第1节 理想流体力学方程组 1.1 预备知识

1.  理想流体: 指忽略粘性及热传导的流体.   2.  流体的状态 (运动状态及热力学状态) 的描述   (1)   速度向量 $\bbu=(u_1,u_2,u_3)$: 流体微元的宏观运动速度.   (2)   质量密度 $\rho$: 单位体积流体的质量. a.  质量流向量 (动量密度向量) $\rho\bbu$; b.  动量流张量 $\rho \bbu\otimes \bbu$; c.  比容 $\tau=\cfrac{1}{\rho}$: 单位质量流体的体积.   (3)   压

[物理学与PDEs]第2章第1节 理想流体力学方程组 1.4 一维理想流体力学方程组

1.  一维理想流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p t}(\rho u) +\cfrac{\p}{\p x}(\rho u^2+p)&=\rho F,\\ \cfrac{\p}{\p t}\sex{\rho e+\cfrac{1}{2}\rho u^2} +\cfrac{\p}{\p x}\sez{\sex{ \rho e+\cfrac{1}{2}\rh

[物理学与PDEs]第5章习题10 多凸函数一个例子

证明函数 $$\bex \hat W({\bf F})=\sedd{\ba{ll} \cfrac{1}{\det{\bf F}},&if\ \det{\bf F}>0,\\ +\infty,&if\ \det{\bf F}\leq 0 \ea} \eex$$ 是多凸的.   证明: 由 $$\bex f(x)=\cfrac{1}{x}\ra f'(x)=\cfrac{-1}{x^2}\ra f''(x)=\cfrac{2}{x^3} \eex$$ 知 $$\bex \cfrac{\r

[物理学与PDEs]第1章习题10 自由电磁场在 Lorentz 规范变换下可使标势为零

在自由电磁场的情况, 证明: 在保持 Lorentz 条件下的规范变换下, 可使标势恒为零.   证明: 取 $\psi$ 满足 $\cfrac{\p \psi}{\p t}=\phi$ 且 $\cfrac{1}{c^2}\cfrac{\p^2\psi}{\p t^2}-\lap\psi=0$, 则在规范变换 (6. 14)-(6. 15) 下标势 $\phi'=\phi-\cfrac{\p\psi}{\p t}=0$, 且满足 Lorentz 条件 $$\bex \Div{\bf A}'+\c

[物理学与PDEs]第2章习题参考解答

[物理学与PDEs]第2章习题1 无旋时的 Euler 方程   [物理学与PDEs]第2章习题2 质量力有势时的能量方程   [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题   [物理学与PDEs]第2章习题4 习题 3 的变分   [物理学与PDEs]第2章习题5 正应力的平均值   [物理学与PDEs]第2章习题6 有旋的 Navier-Stokes 方程组   [物理学与PDEs]第2章习题7 一维不可压理想流体的求解   [物理学与PDEs]第2章习题8